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Abstract

The finite element method requires the generation of a mesh, based on an appropriate density distribution, so
that the numerical analysis using it provides as optimal a result as possible with a reasonably low computational
cost. The generation of inner points in a spatial domain of analysis may be accomplished via two types of
quadtree decomposition for two-dimensional cases. The density formulations are quoted and analyses of their
performance are given. Delaunay triangulation has been utilized within the mesh generator to connect the
interior points. The robustness of this technique has been investigated. For real engineering applications,
boundary recovery algorithms have been adopted in order to ensure the integrity of the boundary. A series
of benchmark tests have been carried out on this work. Mesh quality improvement and the conversion from
triangles to quadrilaterals has also been discussed.

1. Introduction

In finite element analysis, the construction of an appropriate mesh is a key problem. It is essential
that a mesh be generated which is based on an appropriate density distribution such that the numerical
analysis will provide as optimal a result as possible with a reasonably low computational cost [1,2].
In this paper, it has been attempted to address techniques involved in domain decomposition, and
to investigate some formulations of density distribution. All the finite element meshes reported were
constructed by means of Delaunay triangulation. The issue of robustness for mesh generation based
on this technique has been addressed. Boundary recovery algorithms have also been investigated
to ensure boundary integrity for real engineering applications. A series of benchmark tests are
illustrated and mesh quality improvement and conversion from triangles to quadrilaterals has also
been discussed. This paper is mainly concerned with two-dimensional geometries, however some
of the discussion extends to three-dimensional geometries by analogy. An example of convection
dominated heat transfer has been used to illustrate the dramatic improvement in the quality of the
finite element solution when adaptive remeshing is employed.
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2. Domain boundaries

Given a geometrical shape for finite element analysis, there are several different methods which
may be used to produce the necessary nodal points and subsequent element mesh. Domain decom-
position is one such method which is useful for generating the necessary nodal seeds [1-4]. All
the nodal points can be directly created in this way, and then triangulated into a finite element
mesh. This will include a modification process of the boundary cells at a tree level, in order to
represent the domain boundary. The alternative strategy used in this paper is to create the bound-
ary points, based on general segment subdivision, and then to generate the interior points based
on domain decomposition. The analogy of this strategy in the three-dimensional case would be to
produce boundary points with surface meshes without using octree decomposition separate from the
generation of interior points based on domain decomposition.

The generated points on the edges of a domain should reflect the geometric features and the
physical behaviour of the problem concerned. This can be achieved by using the mesh density
distribution method, which will be discussed in Section 4. Also, the mesh density criterion used
for the boundary point generation should correlate with that used in generating interior points.

3. Domain decomposition

For the automation of adaptive finite element analyses, one extremely important feature is the
control of mesh density, which can be achieved via the use of domain decomposition. The size of
the finite elements are governed by the level of the tree in which the final cells are constructed
(see Figs. 1 and 2 for two-dimensional cases). In an automated environment, the sequential analysis
procedures provide a density requirement for the subsequent meshes, for which the domain needs to
be subdivided at different tree levels. Fig. 3 illustrates the results of using the two aforementioned
quadtree schemes.

T

Fig. 1. Schematic of tree structure: square quadtree in two Fig. 2. Schematic of tree structure: triangle quadtree in
dimensions. two dimensions.
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Fig. 3. Two meshes using: (a) square quadtree, (b) triangle quadtree.
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Fig. 4. The schematic diagram of a casting example.

The density can be specified according to the physical behaviour of the problem and the geometry
features for the initial finite element analysis. The experience of the authors in the simulation of
casting processes indicates that a mesh can be properly constructed based on information of critical
regions, a mesh density distribution and a basic mesh size. A schematic illustration is given in Fig. 4.
The critical regions (or points, or surfaces) can be determined by the geometrical features (Critical
Region A), and boundary conditions (Critical Region B). The critical regions will be identified
together with the mesh density distribution. The basic mesh size is governed by both geometrical
features and the numerical accuracy desired.



50 R W. Lewis et al.| Finite Elements in Analysis and Design 20 (1995) 47-70
3.1. Quadtree

In two-dimensional cases, domain decomposition takes the form of a quadtree structure, in which
the corner points or the central point of each cell may be chosen as nodal points of a finite element
mesh. The two kinds of cell shapes involved in quadtree, square-shaped and triangle-shaped, can be
used as two alternatives. Square quadtree is the most commonly used shape of quadtree in many
application areas. All four subcells in a cell are again squares of half the length of the parent cell
(Fig. 1). Triangle quadtree is a recent innovation. All four subcells in a cell are triangles of half
the size of the parent cell. From the locations of the points created, it can be seen that the triangle
quadtree results in a mesh of better quality in the interior of the domain than does the square
quadtree method.

3.2. Octree

For three-dimensional problems, the corresponding domain decomposition is referred to as octree
decomposition, and the cells are cubes or tetrahedra, which are straightforward extensions of squares
and triangles respectively.

Fig. 5 illustrates an encoding scheme for tetrahedral octree. Note that the sides drawn in thick
lines are /2 times longer than those of the corresponding thin lines. A tetrahedron is defined as

(a) (b)

© (d)

Fig. 5. Encoding scheme of tetrahedral octree: (a) a regular tetrahedron; (b) splitting of regular tetrahedron; (c) an irregular
tetrahedron; (d) splitting of irregular tetrahedron.
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being “regular” if its six sides are of equal length; otherwise, it is referred to as being “irregular”.
A regular tetrahedron octant can be split into four regular and four irregular tetrahedral sons, while
an irregular tetrahedron octant can be split into two regular and six irregular tetrahedral sons [5].
The tetrahedral-octree encoding is more difficult than hexahedral-octree encoding. However, it is
expected that tetrahedral octree will lead to a better mesh than achieved via cubic octree regardless
of the elements near the boundaries.

3.3. Removal of unnecessary points

For the spatial domain of the problem concerned, the tree structure starts with an initial cell which
covers all the subdomains. The subsequent decomposition will depend upon the density distribution
with the resulting cells being either inside, outside or crossing the boundary. Some adjustment
schemes can be used to move the points of certain cells to match the boundary. However, in the
present scheme, the cells are only used to locate the interior nodal points for the mesh, in which
case no adjustment is necessary to move the points of cells straddling the subdomain boundary.

Once the cells representing the density requirement are constructed, points can be located to define
the possible mesh nodes. However, some of these may be outside or very near to the boundary.
Therefore, a strategy has been designed to remove these points with reference to the geometrical
information (in/out) and the rest of the points are assigned as the interior nodal points of the
subdomain being processed. This is repeated for all the subdomains.

3.4. Comments

Since a “quadtree” or “octree” structure represents a collection of hierarchically structured cells
which are tied together through the use of a tree structure, they have the advantage of being easily
created and accessed, and also provide a useful data structure for the mesh generation procedure.

However, the distribution of generated points is such that the real density of the points changes
step by step, therefore the spacing of the resulting meshes do not transit smoothly from one location
to the other even if the desired density varies continuously. This is an essential drawback of the
point generation scheme based on this domain decomposition approach.

Alternative methods can be designed to create the points which are generated during the
Delaunay triangulation process, where every point is located in the centroid or circumcircle center
of a previously formed triangle. This scheme will improve the speed of the mesh generation process
significantly. However, in this approach, the density specification should be treated with caution, as
may be observed in the next section.

4. Density specification

Recursive subdivision is controlled by the mesh density requirement as specified by the finite
element result and the geometric features of the object concerned. Generally for the finite element
method, a more accurate result is obtained with a finer mesh.

In order to reduce computing costs, an “adaptive” finite element scheme can be used, in which each
mesh is constructed to match the density distribution as calculated from discretization error estimates
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Fig. 6. Density specification.

based on previous analyses. The numerical analysis proceeds in an adaptive mode with a sequence of
meshes based on the results of the error analysis. Fig. 6 illustrates the density specification scheme
used in the present work for adaptive analyses, which is to be outlined as follows.

4.1. Initial meshes

The sequence of an adaptive analysis requires an initial specification of a basic mesh size and
control points assigning local mesh densities. These control points and the corresponding densities
should be appropriately located to best satisfy the requirement for an accurate analysis.

In order to allow the mesh generator to make a suitable judgment regarding further cell subdivi-
sion, the density at a chosen point of the cell must be calculated. Many interpolation methods can
be used to determine the density over the domain [6]. The following one is of particular interest,
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which can be written as

f{;/ill (1.0<a<2.0), (1)

vioi=1t;

dp:Z:1

where n control points are involved and 7; is the distance between the current point and the control
point i (see Fig. 7). Generally, only the nearest control points should be involved instead of all the
control points in the domain, in order to reflect the local features.

In an analogous way to the method of using point sources as control functions with elliptic partial
differential equations, it is possible to define line and point sources to provide density control for
unstructured meshes (see [7]).

4.2. Subsequent meshes

The mesh density required is an alternative indicator of estimated error. The mesh density values
are given at the nodal points on the previous mesh (i.e. background mesh). A reasonable scheme
should be designed to establish a mapping from the nodal values to the value at any concerned
point within the domain. Using the same shape functions as those embedded in the corresponding
finite element implementation, a density value can be obtained (cf. Fig. 6). Alternatively, direct
interpolation can be used from the density values of the points within the neighbourhood of the
point concerned.

The judgement whether a cell should be further subdivided is a sensitive decision in the point
generation stage. Some researchers use density values at the corner points of cells, whilst others
employ those at central points of cells.

In the present work, it was observed that these schemes have drawbacks which sometimes resulted
in undesirable meshes. Fig. 8 illustrates some cases where the above schemes will fail to perform
further subdivisions. Fig. 9 shows an example exhibiting the behaviour of these schemes with
reference to a basic mesh size. For this example, the mesh density distribution and location of the
high mesh density points are given in Fig. 10. Therefore, a relatively better scheme was adopted in
which all the density points within the current cell are considered, and the maximal density value
within the cell was used as a criterion for subdivision. In the case where there was no density point
within the cell, the nearest density point was used.

<7

Fig. 7. A general interpolation scheme.
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Fig. 8. Some failure cases of point generation schemes based on the densities calculated at the comer points or the central
point of a cell.

5. Delaunay triangulation
5.1. The algorithm

Delaunay triangulation is one form of triangulation in which each element of the mesh satisfies the
Delaunay criterion, i.e. the circumcircle (circumsphere in three dimension) of the element contains no
other points. This form of triangulation of a set of points will result in a convex hull, which covers
all these points. There are many algorithms available which will construct this kind of triangulation
[8-11].

All the boundary and interior points are sorted to determine their range and a bounding convex
polygon (convex polyhedron in three dimension) is created to initialize the triangulation. Subse-
quently, boundary recovery and the removal of unwanted elements are executed to obtain the desired
mesh.

5.2. Robustness issue

When the Delaunay triangulation scheme is implemented, one is faced with issues pertaining to
the robustness of the mesh generation as degeneracy may occur in the triangulation stage. One of
the most common problems is the case where four points lie on a circle (five points lie on the
surface of a sphere in the three dimensional case). The points generated from the aforementioned
tree structure result in a regular distribution. Therefore, some degree of perturbation is required for
shifting the interior points slightly in order to reduce the possibility of degeneracy. The perturbation
can be formulated in either a deterministic or random form. In the present work, the perturbation
takes the following form for two dimensions (see Fig. 11), while a similar analogy can also be
formulated for the three-dimensional case:

x, = x;, + AC;cos(ia),  y, = yi + AC;sin(iar), o = /B, )
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Fig. 9. Behaviour of subdivision schemes associated with reference mesh sizes.

where B is an irrational coefficient which prevents duplicate movement of these interior points; 4 is
a control coefficient of value much less than unity; and C; is a local spacing scale related to point i.
If the aforementioned domain decomposition is used to create the interior points, C; can be chosen
to be equal to the size of the cell containing point i.
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Fig. 10. Mesh density distribution and location of the high Fig. 11. Perturbation scheme for all interior points.

mesh density points.

The perturbation procedure may be used in two ways. One is to perturb all the points before
triangulation. The other is to perturb those points which lead to degeneracy during triangulation
in a recovery stage. In the authors’ experience this technique was found useful to recover from
degeneracy in many cases.

There is a possibility that the boundary points are distributed regularly, which again leads to
degeneracy. An existing triangle is rejected during triangulation if a point is formed to lie in its
circumcircle. A point X; is contained within the circumcircle of the triangle, centered at X, with
radius R,, if

X, — Xol| < R.. 3)
However, due to round-off error, this can be redefined by introducing a small value €. If there exists

[[X; = Xo|| < (1 —€)Ro, (4)
then the point X; is contained within the circumcircle. Likewise, if

[1Xi — Xo[| > (1 + )R, (5)

then the point X; is outside the circumcircle. From Fig. 12, it can be seen that there is a shaded
annular region. No decision can be made about points if they are located in this region.

Although a compatible mesh can be produced in the degenerate case by control of the parameter
g, the resulting mesh is not unique and will depend on the sequence of inserting the points. During
the triangulation process, a point can be perturbed or dealt with at a later stage, when it is located
within the annular region with respect to a triangle.
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Fig. 12. Tolerance =.

It should be mentioned at this point that degeneracy occurs when three (four) points are collinear
in determining the centre of their circumcircle (the corresponding circumsphere in three dimension).
In this case, the centre will be at infinity, however, this case can be removed by temporarily rejecting
the current point and recalling it for insertion at a later stage.

6. Boundary integrity

In realistic engineering problem, mesh generation often involves complex shapes, and boundary
integrity become an important aspect [10,12-14]. Two procedures which may be employed are
outlined as follows.

6.1. Element rejection

There are essentially two methods of dealing with the missing boundaries. The first is to insert a
temporary point for every missing edge as an aid for the procedure, while the second is to directly
check and recover [13,14]. Both these procedures may result in rejection of some elements and
addition of new ones.

6.2. Boundary recovery

The procedure outlined results in a triangulation which covers the geometry. It is necessary to
delete all triangles (tetrahedra) which are located outside the subdomains concerned. The direction-
ality of the boundary edges (faces), and therefore the directionality of each triangle (tetrahedron)
is related to the corresponding area (volume). If the area (volume) is negative, then the triangle
(tetrahedron) lies outside the subdomain and should be deleted. However, there are other procedures
which can be used based on the geometrical data structure of the triangulation and the boundary
edge (face) information.
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7. Benchmark tests
7.1. Basic meshes
A series of benchmark tests have been carried out as initial meshes for some real problems.

Fig. 13 illustrates the corresponding meshes for the typical problem shown in Fig. 4, while Figs.
14, 15 and 16 demonstrate the basic meshes for some real casting problems.

7.2. Adaptive meshes

A typical benchmark problem of convection dominated heat transfer is illustrated in Fig. 17 [15].
The differential equation governing steady convective-diffusive heat transfer can be written as

oT T
WLt v, 6)
0x dy

in which £ is thermal conductivity; « and v are the Cartesian components of the velocity vector;
and 7 is temperature. In this problem, an assumed flow field is defined, which is of unit magnitude
and constant with time. The inflow boundaries are specified as shown in the figure. The outflow
boundaries are considered homogeneous (i.e. diffusive flux is zero, which of course implies no
temperature gradient). The value of 6 in Fig. 17 for this example has been chosen as 30°. The value
of k is set to 107%, and this low value of conductivity ensures a convection dominated problem
with a Peclet number of 10°.

This problem is solved by combining the adaptive mesh refinement technique with the streamline
upwind Petrov-Galerkin (SUPG) method [15]. Fig. 18 shows a sequence of meshes which were
automatically generated based on a specified target error of 20%. The last mesh at which the target
error was achieved clearly shows a band of very fine elements marking the region of the highest
gradient. All these meshes are smoothed after triangulation, in a manner which will be discussed in
the next section. The solutions from the first and last meshes are shown in Fig. 19 in the form of
line contours. The quality of the adaptive solution is obviously far superior. The converged adaptive
solution is again shown in Fig. 20(b) in comparison with the exact solution of Fig. 20(a). The
viewing direction is as shown in Fig. 17. It may be observed that the adaptive solution is very close
to the exact one.

8. Quality improvement

It is well known that the meshes generated by square quadtree include mainly right-angled triangles
which perform worse than elements with nearly equal angles. However, the mesh quality can be
improved by means of the Laplace smoothing technique [16], and is demonstrated in Figs. 21-23.
In Fig. 23, the meshes are associated with density distribution d(x, y) in the following forms

d(x,y) = 1/[0.05f(x, y) + 0.15], fx ) =100y —x*)’ + (1 —x)’, (7)
where x € [~1.25,1.25], y € [-0.5,1.25].
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Fig. 13. Benchmark test 1: (a) inner points generated using square quadtree; (b) inner points generated using triangle
quadtree.
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Fig. 15. Benchmark test 3: (a) inner points generated using square quadtree; (b) inner points generated using triangle
quadtree.

In the Laplace smoothing procedure, the position X; of an interior node i is positioned to satisfy
the expression
|
)(i:— X/ (i:]""7m), (8)
n; j=1
where »n; is the number of nodes connected to node i, X is the position of the connected nodes,
and m is the total number of interior nodal points. This equation places the interior nodes at
the centroid of the connected nodes. This smoothing process can be performed many times if
required.
Sometimes, the smoothing can be problematic as an interior point may be moved away from
the domain (see Fig. 24), or result in an element having a negative area. In this case, an al-
ternative method may be used to provide greater artificial control on the smoothing process, in
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Fig. 16. Benchmark test 4: (a) inner points generated using square quadtree; (b) inner points generated using triangle
quadtree.

which a relaxation parameter w is introduced (e.g. [10]). The corresponding equation can be
written as

X=Xk + = Z(X" X5 (G=1,--,m), 9)

n; j=1

where the superscript k denotes the iteration number. This algorithm keeps X}*! different from
X} before a smoothing iteration completes, and it differs from that of Eq. (8), where X; will be
overwritten during a smoothing iteration. Unfortunately, these expressions cannot guarantee that an
interior node will not be moved which will violate the above geometry requirement. For a mesh of
better quality there is a reduced probability of such violations. A checking procedure of the mesh
structure must be conducted subsequent to smoothing in order to avoid this problem.
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Fig. 17. Benchmark test 5: a problem of convection dominated heat transfer.

9. Conversion from triangles to quadrilaterals

All the meshes constructed in the previous examples consist of triangles. However, quadrilateral
elements normally give better numerical performance for finite element analyses. Therefore, sev-
eral techniques which convert triangular meshes to quadrilateral meshes have been proposed (e.g.
[17,18]).

Basically, there are two simple conversion schemes as shown in Fig. 25. Fig. 25(a) shows that
every triangle can be split into three quadrilaterals by connecting the middle points on the sides
with the centre point of the triangle. The other scheme is illustrated in Fig. 25(b) where two
neighbouring triangles have been combined to form one quadrilateral. If the resulting quadrilateral
is convex, then it can be further split into four quadrilaterals. However, this strategy cannot create
a complete quadrilateral mesh from one which originally consisted of an odd number of triangles.
Also for the case of a mesh with an even number of triangles, islands of isolated triangles may be
produced leading to a mixed mesh consisting of quadrilaterals and triangles.

In the present work, a facility, based on combining triangles, splitting quadrilaterals and quality
sorting has been established, as illustrated in Fig. 26. Every pair of triangles of the mesh concerned
can be given an indicator which relates to the quality of the corresponding quadrilateral in terms
of the angles. For every triangle inside a domain, there exist three triangle pairs which are related
to it. In the case of a triangle adjacent to a boundary, there are one or two triangle pairs related
it. A sorting process is then completed resulting in an ordering of these pairs with respect to the
quality indicators. At each step, the pair of triangles with the largest quality indicator is combined
and converted into four quadrilaterals. Many triangles will be left unpaired due to the pairing of all
neighbouring triangles with other triangles. This combining and splitting process will finally leave
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(a) (b)

(c) (d)

Fig. 18. (a) The first uniform mesh, (b), (c) two subsequent adaptive meshes, and (d) the last mesh at which the target
error was achieved.

some islands of isolated triangles, which can be split into three quadrilaterals and locally smoothed.
Fig. 27 demonstrates the conversion scheme proposed in this paper.

It should be mentioned that the total element number is at least doubled on using this conversion
scheme. Also, the analogy of this strategy for tetrahedral meshes in three dimensions is not obvious.
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(a) (b)

Fig. 19. (a) Solutions corresponding to the first uniform mesh and (b) the final adaptive mesh.

(a) (b)

Fig. 20. Three-dimentional illustration for comparison of the exact solution (a) with the final adaptive solution (b).

10. Discussion

Recently there have been some applications of artificial intelligence techniques for mesh generation
which appear to assist the user to some extent. Some rules for deciding control densities for finite
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Fig. 21. The smoothing process: (a) a mesh generated using square quadtree; (b) the corresponding smoothed mesh (five

smoothing iterations).

Fig. 22. The smoothing process: (a) a mesh generated using triangle quadtree; (b) the corresponding smoothed mesh (five
smoothing iterations).

element meshes can be inductively constructed from examples provided by experts [19]. The expert
system generated in [20] was able to intelligently identify critical regions and choose a proper mesh
size. Using a neural network technique, a system was developed to predetermine the mesh density.
This system can be trained by incorporating examples of ideal meshes [21,22].

11. Conclusions

The present paper has addressed our experience on mesh generation based on domain decomposi-
tion and Delaunay triangulation techniques. The domain decomposition technique has the advantage
of being easily created and accessed due to the use of a tree structure, however, the spacing of
the resulting meshes do not transit smoothly from one location to the other, which is the essential
drawback. In the two dimensional case, the triangle quadtree results in a mesh of better quality in
the interior of the domain than does the square quadtree method. By analogy in the three dimen-
sional case, tetrahedral octree is expected to lead to a better mesh than achieved via cubic octree

regardless of the elements near the boundaries.
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Fig. 23. Meshes with a density distribution in the form of the banana function: (a) and (b) are a mesh generated using

square quadtree and its corresponding smoothed mesh (three smoothing iterations); whilst (c) and (d) are a mesh generated
by means of triangle quadtree decomposition and its corresponding smoothed mesh (three smoothing iterations).

Fig. 24. A failure case of the Laplace smoothing technique.

The recursive subdivision is controlled by the mesh density requirement as specified by the finite
element analysis result and the geometric features of the object concerned. The judgement whether a
cell should be further subdivided is a sensitive decision in the point generation stage. The maximal
density value within the cell should be used as a criterion for subdivision, and in the case where
there is no density point within the cell, the nearest density point should be used.
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(3) Smooth on Quadrilaterals Created from Triange Islands.
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Fig. 26. Conversion from triangles to quadrilaterals.
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Fig. 27. Meshes converted from those shown in Figs. 21(a) and 22(a).

When Delaunay triangulation is used within a mesh generator, the question of robustness is
important for the mesh generator to be used in real engineering applications. Boundary recovery
algorithms provide the possibility of ensuring the integrity of the boundary of real geometries.
Benchmark tests such as the ones illustrated, may be used to demonstrate the validity and the
efficiency of a mesh generator.

It has been pointed out that a checking procedure for the mesh should be conducted when the
smoothing process is used to improve the mesh quality.
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