
M. Li et al. (Eds.): GCC 2003, LNCS 3032, pp. 51–58, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Engineering Computation Oriented
Visual Grid Framework

Guiyi Wei1,2,3, Yao Zheng1,2, Jifa Zhang1,2, and Guanghua Song1,2

1 College of Computer Science, Zhejiang University, Hangzhou, 310027, P. R. China
2 Center for Engineering and Scientific Computation, Zhejiang University,

Hangzhou, 310027, P. R. China
3 Hangzhou Institute of Commerce, Hangzhou, 310035, P. R. China

Abstract. Grid computing technology is a focused field in high performance
computing. This paper describes an engineering computation oriented visual
grid framework VGrid, which is capable to bridge the gap between currently
deployed grid services and the computational applications. Based on the Globus
toolkit, and coupled with a client component, a services pool and a server com-
ponent, VGrid visually performs resource discovery, task schedule, and result
processing. VGrid improves the efficiency of utilization of resources by intro-
ducing a logical resource concept. VGrid applications of numerical simulations
in engineering sciences are demonstrated.

1 Introduction

Computer simulations become increasingly more important in studying physical sys-
tems and engineering designs. However, even today’s most powerful supercomputers
were utilized, the scope and accuracy of these simulations are still severely limited by
the available computational power. When we endeavor to simulate the true complexity
of nature and engineering process, we will require much larger scale calculations than
those are possible at present. We can break through these limits by simultaneously
harnessing multiple networked supercomputers, running a single massively parallel
simulation to numerically model the problems of more complexity and high fidelity
[1].

In order to solve these engineering and scientific computing problems, grid com-
puting has emerged as a new infrastructure, distinguished from conventional distrib-
uted computing since that it focuses on large-scale resource sharing, innovative appli-
cations, and, in some cases, high-performance orientation [2]. The sharing that we are
concerned with is not primarily file exchange but rather direct access to computers,
software, data, and other resources, as is required by a range of collaborative problem-
solving and resource brokering strategies emerging in industry, science, and engi-
neering. The shared resources are autonomous, distributed, heterogeneous and dy-
namic. At the present time, there are at least two available pieces of grid middleware,
such as Globus [3] from Argonne National Laboratory, and Legion [4] from Univer-
sity of Virginia. The Globus adopts OGSA [5] architecture. There are many successful

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

52 G. Wei et al.

applications based on the Globus, such as Cactus, OVERFLOW-D2, X-ray CMT,
SFExpress, MM5, and Nimrod [6]. The Legion uses the object-oriented technology
[9]. There exist many successful applications based on the Legion, such as NAS,
DSMC, and NPACI [7].

Although grid computing achieved great successes in many fields, it still needs to
be improved in some aspects. That is due to the facts:
1. The emergence of standards in grid technologies needs more scientists’ efforts in

various fields. Their efforts make grid technology meet the requirements in these
fields.

2. The gap between currently deployed grid services and the would-be user commu-
nity has been largely stretched.

2 VGrid Framework

VGrid locates between grid middleware (such as Globus and Legion) and engineering
applications as shown in Figure 1. It provides an integrated development environment,
abstracts basic grid services (such as authorization, authentication, MDS, GRAM,
GASS, and etc.) empowered by grid middleware, and provides high level VGrid
services oriented to engineering applications. Using VGrid services through their
APIs, applications can be developed and deployed more efficiently under grid com-
puting environment. VGrid framework consists of client component, application mid-
dleware component and server component, as shown in Figure 2.

Resources Network

Grid Middleware (Globus, Legion, etc.)

VGrid Framework

Engineering Applications

Fig. 1. Location of VGrid in the grid environment

The client component is a portal of VGrid and provides a graphical user interface
for development and execution of grid-based applications. It comprises a VGrid sys-
tem manager, a services manager, an application development environment, a task
manager and a result manager.

Application middleware component is actually a hierarchical services pool. All
services in the pool are based on the Grid Security Infrastructure supplied by the Glo-
bus Toolkit. Taking consideration of resources security, the using of each service must
base on a success of authentication and authorization.

An Engineering Computation Oriented Visual Grid Framework 53

Server component is composed of distributed resources manager in the virtual or-
ganizations. This resources manager communicates with local hosts through the net-
work. They provide resources such as computer power, storage, software, data, and
visualization devices.

Fig. 2. VGrid architecture

In order to satisfy different requirements, VGrid users are classified into three lev-
els,that is User A, User B, and User C, according to their motivation. User A has some
developed application programs, but does not know about grid technologies. He only
wants to find out proper resources to execute his programs. User B also has some de-
veloped application programs, and has some acquaintance with grid technologies and
utilization of the grid-based distributed resources. He wants to choose the proper re-
sources to deploy his programs and to monitor the processes of submission, execution
and result processing. User C wants to develop applications in the grid or to upgrade
an existing program to make it fit with the grid environment. He is very familiar with
grid technologies, and wants to take full advantage of grid services to develop and to
deploy his applications in order to utilize use resources more efficiently.

VGrid provides three type services VS (VGrid services), GS (grid services), and
MVS (geometry modeling and visualization services):
1. GS: Provided by the Globus Toolkit, it includes MDS (Metacomputing Directory

Service), GRAM (Globus Resource Allocation Manager), and GridFTP [8].
2. VS: It includes virtual organization register, user manager, resource information

services, task definition, task import and export, task submission, task scheduling,
task monitor, and file transfer. A VGrid user can accomplish resources discovering,
information transfer and task running by using these services in a visual fashion.

3. MVS: It is oriented to engineering computation and scientific visualization. It in-
cludes geometry modeling, geometry meshing, data format conversion, local visu-
alization, remote visualization, and distributed visualization.

54 G. Wei et al.

3 Implementation of VGrid Framework

3.1 Visual Resources Discovery in the VGrid

The execution of a computing task needs a lot of resources. The resources are distrib-
uted, dynamic and autonomous in a grid environment. How many resources are avail-
able? Which should be allocated to a specified task? These questions must be an-
swered during task scheduling. To answer these two questions, resources information
services provide two interfaces, a hierarchical resources tree, and a resources list. The
content of this tree is detailed information of the hosts in virtual organizations, to
which the local host registered. It also shows the architecture of those virtual organi-
zations. Each item in the list is information of an individual host. The information on
the list can be customized for display. Generally it consists of host name, node count,
CPU count, speed and free percentage of CPU, free memory size, free secondary stor-
age, network bandwidth and latency. A user can get enough information from this tree
and the list for task schedule. The resources a task needs can be allocated through this
interface.

In the VGrid, resources are divided into two classes, computing power and visuali-
zation devices. The computing power includes personal computers, PC clusters, work-
stations and supercomputers. The visualization devices are special distributed display
devices, and are used to display high fidelity images and sophisticated graphical re-
sults of engineering computations.

VGrid adopts object-oriented technology to describe resources. Each attribute item
in a resource object is stored by a couple of value as <attribute, value>. All informa-
tion in a virtual organization is encapsulated as <node_id, res_info>, where the
“node_id” is a host name or IP address of the host, and the “res_info” is an instance of
class “MdsResult”, which is used to describe the information of a resource in detail.

3.2 Definition of a VGrid Task and Dynamic Resource Allocation

A session for each user is defined in the VGrid. The session is created when one logs
in, and destroyed after one logs out. In the session, a user defines computation task,
possesses resources, monitors task execution, collects results, and does post-process
for the results. In the VGrid, the session is described as a SCB (session control block),
which includes user information, identification of the user for each task.

The VGrid provides a graphical user interface as depicted in Figure 3, to input a
new task or to update an existing task. The data include executable program, resources
requirements, and schedule requirements. When VGrid accepts the data, an instance of
task class is initialized and added to logical resources allocation queue. The task’s
state is initialized to value “WAITING”. The C++ definition of VGrid task class is de-
fined as follows:

An Engineering Computation Oriented Visual Grid Framework 55

class VTask{
 public:
 enum TaskType { Single = 0, Mpi = 1,
 Multiple = 2 };
 enum TaskStyle { CpuBusy = 0, IOBusy = 1};
 enum TaskState { Scheduling = 0, Scheduled= 1,
 Finished = 2 };
 enum InTaskQueue { ScheduleQueue = 0,
 SubmitedQueue = 1,
 FinishedQueue = 2 };
 private:
 struct Sid sessionid;
 Qstring taskname;
 Qstring jobidstring;
 struct JobRsl jobrslstring;
 TaskState taskstate;
 struct TaskQueue taskqueue;
 struct QTime starttime;
 QString finishtime;
 int priority;
 QString jobcontact;
 …
};

Fig. 3. A snapshot of defining a task in the VGrid

The dynamic resource allocation includes two steps, that is logical resources allo-
cation and physical resources allocation. During the logical resources allocation, tasks
in the queue possess logical resources by the FIFO algorithm. Logical resource is a
type of virtual resource defined by the VGrid. It includes resource name, node count,
and CPU count. The physical resources are not allocated until the task is scheduled to
execute, because resources in the grid are dynamic. The performance of VGrid can be
improved by introducing the concept of logical resource. The next step of this phase is
task schedule, which maps logical resources to physical resources. A task is added to
ASQ (Auto Schedule Queue) or ISQ (Interactive Schedule Queue), according to its

56 G. Wei et al.

attribute of schedule control after logical resources allocation. Tasks in ASQ will be
scheduled automatically. But tasks in ISQ should be scheduled manually, that is, a
user can filter and select resources from available list manually as he needs in a
graphical interface.

After the task gets enough resources, its state is changed to “READY”, then it will
be add to EQ (execute queue). Tasks in the EQ state are actual executable jobs and
will be submitted using the FIFO algorithm by VGrid executor, which is a daemon
named Vexecutor.

4 Engineering Computational Applications with the VGrid

Engineering sciences (such as solid mechanics, fluid mechanics, and thermodynamics)
and most physical sciences allow physical systems to be described in a form of Partial
Differential Equations (PDE). Due to their complexities, most of these equations
could not be solved analytically. With the advances of computer technology, numeri-
cal methods become preferred. Finite Element Method (FEM) is a popular approach
among these methods. The method, coupled with the development in computer tech-
nology, has been successfully applied to the solution of these problems in a nonlinear
manner for all spatial domains.

The process of FEM analysis includes three steps: 1) discretization of the domain,
which transforms the PDEs into algebraic equations; 2) formulating the algebraic
equations to the global equilibrium equations; and 3) solving the algebraic equations.
In this section, two use cases of VGrid-based applications are to be presented. The
first case is a 2-D numerical simulation for a safe factor of a slope under its self-
weight in geotechnical engineering. Four grid computation nodes (single CPU,
2.0GHz) are utilized for the pre-process, computing, and post-process during the
simulation. It takes 7.6 seconds in the computing stage. The results of the simulation
are shown in Figure 4.

Fig. 4. The simulation results of the first case

An Engineering Computation Oriented Visual Grid Framework 57

The second case is a 3-D numerical simulation of the deformation of a mechanical
device under a surface pressure. It is more intricate than the first case. To test the
speedup and scalability, the VGrid runs the simulation program with the same pa-
rameters for two times using different number of computational nodes networked with
100M bandwidth. The types of the computation resources used and the time consumed
in this case are shown in Table 1, the results of the simulation are shown in Figure 5.

（a）Geometrical model of the device

（b）Discretization of the device （c）Deformed shape of the device

Fig. 5. The simulation results of the second case

Table 1. Used computation resources and consumed time of the second case

Runs Types of Machines Nodes
Time Con-
sumed

Intel Pentium IV PCs（P4 2.0G Hz） 3
1

Intel Pentium IV PCs（P4 1.8G Hz） 1
87.3 sec

Intel Pentium IV PCs（P4 2.0G Hz） 6
2

Intel Pentium IV PCs（P4 1.8G Hz） 2
61.4 sec

5 Conclusions

An ideal application oriented grid computing framework should have a friendly user
interface, and provide a virtual computing environment composed of many heteroge-
neous resources. Users are enabled to develop and to deploy applications easily with
the computing power, provided in the grid environment, just like using a

58 G. Wei et al.

supercomputer. The VGrid supplies the users with a graphical grid-enabled applica-
tion development and deployment environment for engineering computation. It hides
detailed complex processes of grid middleware. Users are able to use all kind of re-
sources in the virtual organizations transparently. The VGrid improves the efficiency
of development and speed up the execution of engineering applications in grid com-
puting environment by using VGrid services. Therefore, it is an efficient environment
for engineering computation.

Acknowledgements. The authors wish to thank the National Natural Science
Foundation of China for the National Science Fund for Distinguished Young Scholars
under grant Number 60225009. We would like to thank the Center for Engineering
and Scientific Computation, Zhejiang University, for its computational resources, with
which the research project has been carried out.

References

1. Gabrielle Allen, Edward Seidei, John Shalf: Scientific Computing on the Grid: Tomorrow’s
Dynamic Applications Will Require Computational Grids, Scientific Computing, Springer,
2002

2. Ian Foster, Carl Kesselman, Steven Tuecke: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, Int. J. Supercomputing Applications, 2001, 15(3)

3. I. Foster, and C. Kesselman (eds.): The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 1999

4. Anh Nyguyen-Tuong, Steve Chapin, Andrew Grimshaw, Charlie Viles: Using Reflection for
Flexibility and Extensibility in a Metacomputing Environment, Technical Report CS-98-33,
Department of Computer Science, University of Virginia, 1998

5. J. Nick, I. Foster, C. Kesselman and S. Tuecke: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, Open Grid Service Infrastructure
WG, Global Grid Forum, 2002

6. Globus Alliance, URL: http://www.globus.org/research/applications/default.asp (Current
September 14, 2003)

7. Legion: A Worldwide Virtual Computer, URL: http://legion.virginia.edu/overview.html
(Current September 14, 2003)

8. I. Foster, J. Insley, G. von Laszewski, C. Kesselman, and M. Thiebaux: Distance Visualiza-
tion: Data Exploration on the Grid, Computer, 32(12): 36-43, 1999

9. Andrew S. Grimshaw, Michael J. Lewis, Adam J. Ferrari, John F. Karpovich: Architectural
Support for Extensibility and Autonomy in Wide-Area Distributed Object Systems1, Tech-
nical Report CS-98-12, June 3, 1998

	1 Introduction
	2 VGrid Framework
	3 Implementation of VGrid Framework
	3.1 Visual Resources Discovery in the VGrid
	3.2 Definition of a VGrid Task and Dynamic Resource Allocation

	4 Engineering Computational Applications with the VGrid
	5 Conclusions

