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4. File editors
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6. Laboratory Exercises

1.1 Introduction to UNIX

1.1.1 What is UNIX

UNIX is a trademark of UNIX Systems Laboratories (USL), a subsidiary of AT&T. IRIX is
SGI developed UNIX operating system compliant with UNIX System V Release 4 and Open
Group’s many standards including UNIX 95, Year 2000 and POSIX.

UNIX is a multi-user, multi-tasking operating system, as well as, a machine indepen-
dent operating system, a software development environment.

UNIX is developed at AT&T Bell Labs in 1970 for a software development environment,
and was rewritten using c language in 1973. by University of California Berkeley adds ma-
jor enhancements, creates Berkeley Standard Distribution (BSD) in 1984. Many Berkeley
features incorporated into new AT&T version: System V in 1983 to date. Most of the work-
station chooses UNIX as the operating system, c as the basic language. Two variations keep
popularity today which are AT&T System V and Berkeley Standard Distribution (BSD).
[EEE POSIX is developed as a Potable Operating System specification based on UNIX.

AT&T distributes System V for their computers. System V is also the basis for several
commercial vendors, such as HP-UX, Apple AUX, IBM AIX, Cray UNICOS, SGI IRIX. BSD
also is basis of some commercial vendors too, such as SUN, Apollo, DEC Ultrix. System V
and BSD contain a large set of commands in common. Some of these commands support
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different options and have different default behaviors and output formats. Each version also
has its own unique utilities.

1.1.2 Why UNIX

UNIX operating system is a REAL share-time multiple processes operating system.
That is necessary for the parallel computing. ( Windows NT ).

UNIX is hardware independent operating system. The code is written in C language
rather than a specific assembly language. Operating system software can be easily
moved from one hardware to another. UNIX applications can be easily moved to
another UNIX machines.

Productive environment for software development, rich set of tools, easy command
language, programmable.

UNIX is available at all NSF sponsored supercomputer centers.

UNIX has excellent stability ( run more than 3 months without reset ).

1.1.3 Linux — open source software

"Hello every body ... I'm doing a ( free ) operating system ( just a hobby, won’t be
big and professional ...) ”
Linus Torvaids, creator of Linux, August 25, 1991

UNIX-like operating system, supported by a global community.
Lower cost of entry, especially for big cluster

Good stability. Ran 3 months without restart ( IBM East Fishkill, NY)
Comparing with Windows 2003, logest run without lockup: 5 days.

10% better performance than Windows 2003 does.
FEasy administration and management

Good security.

1.2 UNIX Basics

Kernel: memory resident control program. Kernel provides service to user applications,
device management, process scheduling, etc.
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e shell: command interpreter and programming language. Several shells are available,
each with its own strengths: Bourne shell (sh), C shell (csh), K shell (ksh), tc shell
(tcsh) ete..

e Utilities: several hundreds utility programs provide universal functions: editing, file
maintenance, printing, programming support, online information. For example, ps,
grep, more, Vi ......

a Utilities N
Shell
Kernel

Hardware
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To use the UNIX commands just needs to type the executable file names. UNIX is case
sensitive, remember only type lower case for command name. The syntax of commands
used to be: command option(s) argument(s). The options is beginning with a dash (-),
multiple options can ofter be combined. The arguments are some keywords and filenames.
For example,

[s

Is —1

Is —la
Ils —1 x.f

You can use a lot commands to get information from machine such as:

e man: — man displays on-line manual pages of the utilities or shell. For example,

man man
man passwd
man — k password

man help

e who: — who shows who is on the system. For example,

who

who am 1@

e finger: finger displays information about users, by name or login name. The name
could be with remote address. For example,

finger dong
finger super124Qukcc.uky.edu
You also need to be familiar with terminal control keys.
e CTRL-u: erase everything you’ve typed on the command line.

e CTRL-c: stop a command

CTRL-d: exit from an interactive program

e CTRL-z: suspend a command

CTRL-s: stop the screen from scrolling

CTRL-q continue scrolling
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1.3 UNIX file system

UNIX files exist in a single shared file system organized into a hierarchy of directories.

file
e ) (e )

UNIX system supports NSF (Networked Shared Files).

Directory: Used to contain plain files and (or) other directories. Can be used to
organize groups of files. Allow parts of the system to be protected from unauthorized
users. ( Good security ).

root: All directories are descendents of the "root”, names ”

Working directory: the current default directory for commands and constructing rela-
tive pathnames.

Home directory: The directory associated with your login name, your initial working
directory.

UNIX is sensitive to capital or small characters. You can use up to 256, in general,
characters to define your file names.

Be sure do not use special characters, space, and tabs & ; |7 \’7 ‘[] < >$% ! *.

Extensions: used to identify types of the files. A lot of standard extensions include .c,
1, .90, .F, .ps, .tex, .jpg, .gif, ....

Invisible files: It is not listed by ”1s”, reduce clutter begin with ”.”

Pathnames:
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Absolute Pathnames: refer to files by its descent from the root, always begin with
7 /7. For example, /usr/local/doc/training/sample.f

Relative Pathnames: refer to files from the working directory, never begin with
” /7. For example, training/sample.f

e Special characters can be used to match group of the files ( ”wild card” characters ).

1.

? — matches any single character in a file name. For example, ”"Is 7777” will lists
all 4 character filenames.

* — matches any number of characters, but not leading periods. For example,
?1s *.f *.c 7 lists all files ending with .f or .c

'[ | — matches any character in the set withing the brackets. For example, ”1s
[Mia] ” lists files starting with M,i,a

e File Commands:

1.

71s” — lists the contents of a directory. ( exp. type "man Is” to see the details of
command s ).

"cat” — concatenate and display one or more files to the terminal. One can use
"(CTRL — s)” to stop output and use (CTRL — ¢) to quit the stop.

"more” — to display and browse long files page by page. One can use "h” for
help, spacebar for pageing, q for quitting.

"cp” — to copy a file to another file. ”cp” will OVERWRITE” existing files, so
be careful. ( exp. type "man cp” to see the details of command cp )

"mv” — to move a file ( is equivalent to rename a file ). "mv” will OVERWRITE
existing files so be careful.

"rm” — to remove a file ( delete a file ). rm” could not be rescued. For safety,
one can use option ”-i” as inquire option.

e Directory Commands:

1.

Directory identifiers: ( directory names )

~ : your home directory
~ loginname : loginname's home directory
working directory

parent directory

"pwd” — ”Path of Working Directory” displays working directory absolute path-
name.
"mkdir” — "make a directory” creates a new directory.

"c¢d” — 7Change Directory” changes your working directory. item ”rmdir” —
"remove a directory” ( delete a directory ). The directory must be empty before
you remove it. Or "rm -r” will remove directory recursively.
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1.3.1 Access Permissions

UNIX is a multiple user system. You must control who can access your files and how much
access rights they have. UNIX system offers good secure way to allow users to control the
access.

e Output from ”Is -1 name”: The first character displays the name is file ( empty ) or
directory (d ). The next 9 characters displays the permissions of this file ( or directory

).

e Permissions can be controlled at three levels: User, Group and Others. The number
2,3,4 characters control user’s permissions, the number 5,6,7 characters control group’s
permissions, the number 8,9,10 characters control other’s permissions.

e Permissions of a file or directory may be any or all of 3 characters such as:

r —— — read
w — — — write

r — — — execute

e A directory must have r and x permissions if permissions are to be granted to files
within the directory.

e UNIX allows users to change access permissions for their own files and directories.

chmod [user affected] + [permissions] file
[user affected]| are : u — user, g — group, o — others

[permissions| are : r —read, w — write, x — execute

e Example:

Is —1 sample.f
chmod o+ rw sample.f

Is —1 sample.f

1.4 File Editors

1.4.1 UNIX editors

e cd: — the standard line editor.
e ex: — an extended line editor.

e sed: — a stream editor for batch processing of files.
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e vi: — a standard visual editor, allows full screen interaction, uses ed/ex line-mode
commands for bulk file editing.

e emacs — a full screen editor simulates old vax editor ( similar with DOS ), is not part
of the UNIX package.

1.4.2 The Standard Visual Editor vi

e Editing a file: vi filename

e [Exiting vi:

:q— — — quit
: w — — — write edit buffer to disk
: wq — — — write edit buffer to disk and quit
:q! — — — quit without any change
e Positioning:
h — — — left
j — — — downline
k — — — upline
1 — — —right
or «— — T |
0 — — — first column of current line (zero)
A — — — first character of current line
$ — — — last character of current line
e [nserting text:
a — — — append text after cursor
i — — — insert text before cursor
A — — — append text at end of line
[ — — — insert text at beginning of line
0 — — — open a new line after the cursor line and insert text
O — — — open a new line before the cursor line and insert text
Note : — — —hit (ESC) key when finished inserting

e Inserting file:
: read filename — — — insert contents of filename
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e Deleting text:

e Changing text:

e Copying lines:

e Moving lines:

x — — — delete character at cursor

nx — — — delete n characters at cursor

dd — — — delete line at cursor

ndd — — — delete n lines starting at cursor

dnw — — — delete n words starting at cursor

cw — — — replace word with text

cc — — — replace line with text

R — — — overtype existing text until (ESC) is hit
r — — — overtype only one character

J — — — join two lines

nyy — — — "yank” copy n lines of text into buffer

p — — — put contents of buffer after current line

ndd — — — delete n lines (replaced in buffer)

p — — — put contents of buffer after current line

e Searching / Substituting:

: /string — — — search forward for string
:?string — — — search backward for string
n — — — find next occurrenceofcurrentstring
:n,ms/old/new — — — from nth line to mth line substitute new for old

e Miscellaneous commands:

e vi options
: set
: set
: set

. set

u — — — undo the last command

. — — — replace the last command

lcommand — — — issuing UNIX command
nu — — — show line numbers
showmode — — — show a notice when you are inserting text
al — — — autoident
wm = 8 — — — wrap lines

And more commands please see "man vi”.

11
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1.5 Process and Shell

Process is a one dimension stream of execution instructions. UNIX is a multitasking operat-
ing system. Many different processes exist at the same time. One user may have more than
one process running at a time. One user may have more than one simultaneous login session.
In general, only multitasking operating system could be used for parallel supercomputing.

1.5.1 Multitasking and shell

1. When you log in, a login process is created by the kernal, which is an operating system
process responsible for creating and scheduling processes. The login process verifies
your login name and password. It then requests that the kernal create a command line
interpreter process that is the shell. The login process then exits.

2. The shell process reads terminal input and creates processes to satisfy user requests.
For instance, user enters ”1s”, the shell reads this from terminal as input, then locates
the appropriate executable file. It then asks the kernal to create a new process to
run this executable file. At this point user has two processes, a shell process which is
sleeping and a ”1s” process which is running.

3. The ”1s” process lists the directory contents, then exits.

4. The shell process now runs, and gives user a new prompt. The prompt will remain in
existence until you log out.

1.5.2 Jobs

The user’s running processes are ”jobs”.

e To run a job:
User type a executable file name under the shell prompt, it will be submitted to kernal
and starts running almost immediately.

e Running a job in the background:
User type a executable file name with a &, "command &”, the shell returns the process
ID, and almost immediately returns a new prompt. User can then start a second job.
The first job continues to run in the background. But, for some machines, when user
logs out, the background job will be terminated by the system.

e Batch jobs: Most of the UNIX system has batch server. Batch server works as an
independent operating system, which queues and schedules user’s requests whatever
the user is login or not. In general, the user’s requests is written as a serial set of the
shell commands names shell script.



1.5. PROCESS AND SHELL 13

e Managing jobs:

ps — — — to list processes with process ID

kill — — — to cancel a running process

(CTRL — ¢) — — — to kill a foreground job
(CTRL — z) — — — to suspend a foreground job
jobs — — — to list all jobs

fg — — — to put job in foreground

bg — — — to put job in background

1.5.3 Standard I/O and Pipes

e Standard input:
By default, UNIX commands that need input from user expect to receive it from
terminal. That is the standard input ( type and input on your keyboard ).

e Standard output:
By default, UNIX commands that generate output expect to display their results at
the terminal. That is the standard output ( show on your screen ).

e Redirecting standard I/O:
User can choose to have input come from, or output go to a file such as:

cat filel > file2 — — — redirecting output to file2
a.out < file —— — redirecting input from file
tr ISEED 12345 < filel > file2 — — — input from filel output to file2

e Pipes:
A direct connection from the output of one program ( command ) to the input of
another called ”pipe”. The pipes in UNIX is |. For example,

who | sort > aa.d

e Filters:
Filters are some UNIX utilities that read from standard input and write to standard
output. So they can be connected in various ways using pipes. Such as:

grep — — — output lines containing a pattern

sort — — — sort the lines of a set of lines

uniq — — — take input stream and output only one copy of any adjacent lines that are
identical

wc — — — return the number of lines(—1), words(—w) and characters(—c) in a file
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1.5.4 C Shell

e What is a Shell?
Shell is a programming language ( script ), as well as, a command line interpreter.
Shell provides user commands and shell variables. Shell variables could be pre-defined
by the system also could be defined by user. C shell is a BSD standard, however, most
people use the C Shell for interactive work since the commands and language is based
on C language.

e We also have the other shells. Each kind of shell has its owe features. Pear language,
in fact, is a shell too.

1.5.5 Some C Shell Commands

e history:
lists the previous commands you have executed. The number of the history, in general,
is set in a shell "run control” file names .cshre. User also can set the number of the
history again.

e To repeat commands:

' — — — repeats last command
'number — — — repeats numbered command, the number can be find by history

Istring — — — repeat last command starting with string

e To correct commands:

Aold A new — — — changelastcommand

lnumber : s/old/new/ — — — changeindicatedcommand

e exercise:
please type following command and see what happened.

set, history=22
Is

history

pwd

n"

men makdir
I:s/men/man/
la -1

NaNs

s
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e Alias:

Alias allows user to rename a command or modify the default behavior of a command.
The usage is:

alias string command — — — create an alias
unalias string removeanalias

alias — — — lists your aliases

e Exercise:
please type following command and see what happened.

alias rm 'rm -i’
alias
alias 11 ’Is -al \!*| more’
11
unalias 11
e C Shell Variables:
C shell allows user to set character or numerical variables. The variables are avail-

able from current shell only. The shell variables make the c¢ shell much more like a
programming language.

e Commands to define the ¢ shell variables:

set, var = value — — — assign character value to var

set — — — display all shell variables

echo $var — — — display value of var

unset var — — — removes var

@ imax = 15 — — — assign 15 to numerical variable imax

@ $imax = $imax — 1 — — — subtract 1 from numerical variable imax

e Pre-defined shell variables:
When you loged on the machine, type "set” you can see all the pre-defined shell
variables and their values.

e Environment Variables:
A variable from current shell and from all programs started from the shell is the
environment variable.

e Commands:

setenv — — — display all exist environment variables
setenv var value — — — assign value to var
echo $var — — — displays value of var

unsetenv var — — — remove var
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e some environment variables:

CWD: current working directory

HOME: user home directory

USER: userid

MANPATH: where to look for man pages
LIBPATH: where to look for libraries

DISPLAY: where the X server to open a window.

e Your .login and .cshrc files:

The

S

¢ shell used to use 2 files to set up user’s preferences.

Jdogin
It runs at invocation of login shell. It typically sets terminal characteristics,
command search path, and one time shell options.

.cshre

It runs at each c shell invocation, when user log on, starting a new shell, or open-
ing a new window. It typically sets alias information and some user’s preferred
environment.

user can use ”"vi” to change .login or .cshrc. After changing, user can type
source .login

source .cshrc

to make the new environment work. Or user can logout and login again.

sample of .cshrc file:

Default user .cshre file (/usr/bin/csh initialization).
Usage: Copy this file to a user’s home directory and edit it to

customize it to taste. It is run by csh each time it starts up.

# Set up default command search path:

#

# (For security, this default is a minimal set.)
set path=(/usr/local/bin /usr/contrib/bin
/usr/etc /usr/local/lib:$path .)

# Set up C shell environment:

if ( $7prompt ) then # shell is interactive.

set, history=20 # previous commands to remember.
set savehist=20 # number to save across sessions.
set system="‘hostname’ # name of this system.

set prompt = ”$system \!:

7 # command prompt.
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# Sample alias:

alias h history alias ri 'rm -i’ alias lo 'logout’

# More sample aliases, commented out by default:
endif

xhost + ncx1.uky.edu

xhost + serverl.pa.uky.edu

xset +fp /home/dong/xfonts # add some chinese fonts

1.5.6 C Shell Script

That means a C Shell program runs on the machine shell level. Similar program language
also as pear. The script allows user to create a set of shell commands and variables to run
frequently used set of commands and complete some performance designed by user. So user
can submit this script to batch queue and let the machine to complete the job as what the
user whats.

e The ¢ shell script must begin with ”#!/bin/csh”. As well as, it must be made exe-
cutable.

e C shell allows user to define variables and variable arrays:

set var = value
set var = (elem1 elem2 elem2)
$#var — — — number of elements in var

$var[n] — — — value of nth element in var

e Using quotes around values user can include space in the value. However, single quotes
prevent variable substitution, double quotes allow variable substitution.

e C shell variable can read standard input from terminal by $ <. C shell variable can
store the output of a command also.

e Exercise:
Please use "vi” to create a shell script names "test1.cs” as: #!/bin/csh set opt=-1
set x1="1s $opt’
set x2="1s $opt”
echo With single quotes:
echo $x1
echo With double quotes:
echo $x2
echo Enter input

set inputis=$ <
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echo $inputis
set date="date’
echo $date
echo $date[1]
echo $date[2]

echo $date[3]
Numerical variables and evaluations with @ :

C-like control structures:

[if — then — else — endif] — — — branch choice
[foreach — end] — — — iterative loop

[while — end] — — — conditional loop

[switch — case — endsw|] — — — case selection
[sleep n] — — — wait for n seconds

A sample of c shell script for running a program latqced.f90 on batch:
#!/bin/csh

set name= DONG

set LAT= 32x48_62_gauge

@ imax= 5

@i=1

set D=d

set R= .rpt

set TMP=’/scratch/super124’

mkdir $TMP
WORK="/usr/super124/MPI/pure_gauge’
echo $name $WORK $WORKW ul$LAT
cd $SWORK

if( ! SWORK/xqcd ) then

90 latqced.f90 -lmpi -o xqcd

endif

while( $i <= $imax )

@NUM = §i

mpirun -np 64 $WORK/xqed < $WORK /in_gauge.d > $WORK /out.d
mv out.d out_$NUMS$D

tar -cf $TMP /u$NUMSLAT $WORK /fort.*
Qi=§i + 1

end

exit 0
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1.6 Laboratory Exercises: Introduction to UNIX

1. Logon to the supercomputer.
2. Try the following commands:
man passwd
man -k users
whatis who
whatis finger

whatis finger (CTRL — u). Here (CTRL — u) means press the CTRL and u keys ar
the same time.

man -k users ;, aa.d

cat aa.d
3. Getting information:

change your password

determine who is logged on the machine

display information on all users on the machine.
4. Try following directory commands:

whatis mkdir

whatis cd

whatis pwd

whatis Is

mkdir myshell

cd myshell

cp ../aa.d aa.d

pwd

cd

cd /usr/bin

Is -1

Is -1 1%

5. The ”vi” editor
cd myshell

vi aa.d
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Try to move the last line to the beginning of the file.

go to end of the file (G or :9)

delete line (dd)
go to beginning of the file (1G or :1)
put line (p)

Add a blank line after the first line:

insert an line below current line (0)

end insert mode (ESC)

Remove the 7th line then put it back:

move to 7th line (: 7 or7j)
delete this line (dd)
put it back (p)

Insert the phrase ”we seem like the c-shell” after 10th line 4th word.

move to the position (7, k, I, h)
enter insert mode (1)
type the phrase

end insert mode
Ypu can type "u” to "undo” it.
Process commands:
ps  to see what jobs do you have.
sleep 300 & to run a sleeping job in background.
ps check the process ID of sleep in background
(CTRL — z) to suspend sleep
jobs to check your jobs
kill -9 PID to kill the background job sleep.
ps to make sure you have killed the background job sleep.
standard I/0O:
man csh > c_shell_reference
cat c_shell_reference | more
cat c_shell_reference | grep shell > bb.d
more bb.d
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Jogin and .cshrc files ”vi” your .cshre file, add ”alias 11 ’Is -1’ 7 as the last line.
type ”source .cshrc”

try ”11” to see how the .cshrc control your alias.

type echo $DISPLAY on your local terminal to see what is your local DISPLAY
use setenv to set the DISPLAY to your local terminal

type xterm & to see if the new xterm opened in your terminal or not.

The C shell script
vi testl.cs:

#!/bin/csh

set opt=-1

set x1="1s $opt’

set x2="1s $opt”

echo with single quotes:

echo $x1

echo with double quotes:

echo $x2

echo Enter input

set inputis=$<

echo "What I input is’ $inputis
set date="date’

echo $date

echo $date([1]

echo $date[2]

echo $date[3]

echo *This c shell script is called’ $0

exit 0
chmod u+x testl.cs

testl.cs and input hello— to see how the c shell script works as a program.

A simple computing control ¢ shell script

vi aa.d

&indata
xkappa=0.KP
ran_seed=ISEED
ox=X

oy=Y

21
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infile=input_N
&end

vi test2.cs

#!/bin/csh

set KP =15

set X =3

set Y =3

@ IS= 12345

@ imax=5H

@i=1

while ( $1 <= $imax )
@ ISEED= $i * $IS
@ N= $i

tr ISEED $ISEED < aa.d > bb.d

tr X $X < bb.d > cc.d

tr Y $Y < cc.d > bb.d

tr KP $KP < bb.d > cc.d
tr N §N < cc.d > namelist
rm bb.d cc.d

CHAPTER 1. INTRODUCTION TO IRIX

echo "This is your namelist file as input for your program’ $i

cat namelist
@i=8i+1
end

exit 0

chmod u+x test2.cs

test2.cs — to see how the shell changes your namelist input files 5 times for your 5

times computing.

To get your c shell reference
man csh > reference

more reference
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directives

1.
2.
3.
4.
5.

6.

Programming languages

Parallelization and Data Independence

Shared Memory Parallelization and openMP

OpenMP — Application Program Interface Standard Directives
Shared Memory Examples

Laboratory exercises

2.1 Programming Languages

Assembly:

The language is the most important bridge between users and the machine. Program-
ming in the early days of computing was extremely tedious and hard. Programmers
must know details of the instructions, registers and other aspects of the exact CPU
of the computer for which they were writing the codes. The source code itself was
written in a numerical notation, so-called octal code and can be used on only the ex-
act machine. When time was going on, a readable codes were introduced, named as
machine language or assembly language. This language is depends on the exact CPU,
( not portable! ). However, it did enable the make the exact CPU be used in a very
efficient way. So far, it is still being offered by the industry.

Fortran:

In 1950, a team of IBM developed one of the earliest high-level language Fortran, the
Formula Translation Language. This language is simple to understand, independent on

23
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the exact machine and almost as efficient in execution as the assembly language. The
small loss in efficient is programmers must use compiler to make the codes executable.

Fortran was a revolutionary development. Programmers were liberated from the te-
dious working of the assembly language, and were able to concentrate on algorithms,
optimizations and exact problem solvers. More important thing, however, was that
the computer became accessible to any scientist or engineer willing to use it solve the
scientific or engineering problems. The computer were no longer belongs to computer
experts only. Fortran spread rapidly as it fulfilled the needs. The application pro-
grams were developed very fast. Then a problem appeared, how make the program
exchangable, or portable.

In 1960, American Standard Association ( later the American National Standard In-
stitute, ANSI ) brought out the first ever standard for a programming language, now
known as Fortran 66.

In 1978, the Fortran 77 published as a new standard to solve some large-scale problems.
It included several new features that were based on vendor extensions or pre-processors.
By the mid-1980s, the changeover to Fortran 77 was in full swing. The pre-processors
make the Fortran compiler optimizing the original code to fit the exact machine archi-
tecture, as well as, to reduce big number of the work which have been done before it
repeats. That makes the code runs more and more efficiently. During the time, Fortran
77 involved large math labs and some parallel directives, openMP lab, MPI lab, PVM

In the course of time many new languages nad been developed, such as ¢ C++, pascal,
Algo68, HPF etc.. They were demonstrably more suitable for a particular type of
application. They had been adopted in preference to Fortran for that purpose. Fortran
is now in the area of numerical, scientific, engineering, and technical applications. As
well, ANSI-accredited technical committee once again prepared new standard, formerly
known as Fortran 8x, and now as Fortran 90.

In 1990, first Fortran 90 book issued. In 1991 mid-summer, first Fortran 90 compiler
is available. Fortran 90 is different from Fortran 77. It included more features of the
other languages. However, as a standard, Fortran 90 involved Fortran 77 as a full
subset.

1. Unformed lines. Since we do not need the punched card as a input today, we do
not need the 72 columns per line neither. So the line form will be much more like
in ¢ language.

2. Introduce array manipulations that would reduce the programming time. Sup-
pose, it would raise running time performance. However, for most of the RISC
based supercomputer, it goes to opposite way.

3. Modules — encapsulate data nad subprograms.
4. KIND — standardizes the specification of numerical precision.

5. Overloaded — new assignment statements and operators.



2.2. PARALLELIZATION AND DATA INDEPENDENCE 25

6. Include — statements.

7. Do While loops.

8. Namelist I/O

9. Pointers — which provide data structures that can grow and shrink.
10. dynamical arrays.
11. interface — one interface multiple function.

12. And more.

In November 1995, new standard of Fortran 95 were finalized. Fortran 95 took most
of the HPF functions in. It kept Fortran 90 as full subset.

In 1999, the Fortran 2000 Forum issued a standard of Fortran 2000 which involved
almost all C++ features and visual functions. It still keeps Fortran 77, Fortran 90 and
Fortran 95 as full subset.

o c C++:
C is a general purpose programming language. Many of the important ideas of C from
the language BCPL. The influence of BCPL on C proceeded indirectly through the
language B which was written in 1970 for the first UNIX system PDP-7. BCPL and
B are "typeless” language. In 1973, C became a new standard language by providing
a variety of data types.

C is a relatively low level language. That means C deals with the same sort of objects
that most computers do, namely characters, numbers, and addresses. These may be
combined and moved about with arithmetic and logic operators implemented by real
computers.

C—++ is the object oriented version of the C.

Since the dynamical arrays have too much freedom to optimize the performance, the
performance of numerical benchmark shows that ¢ and C++ is slower than Fortran in
numerical computing area.

e SGI Origin 2000 offers Fortran 90/77 compilers as f90 and f77 , ANSI C and ANSI
C++ compilers as cc and CC' .

2.2 Parallelization and Data Independence

2.2.1 Why parallel computing?

e Parallel computing is to use multiple processors to execute parts of the same program
simultaneously.
GOAL: To Reduce Wall-Clock Time
The parallel computing can reduce wall-clock time only. In general, it increases the
CPU time. Then why we need parallel computing?
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1. The real scientific and engineering computing needs more and more performance.
For example, the Lattice QCD with chiral fermions needs average 30Gflops*year
performance, many CFD projects ask 1Gflops*years performance, some special
material projects use 2Gflops*years performance. And the nuclear physics projects
ask 100Gflops*years to 1Teraflople*years performance. The requests are still in-
creasing year by year. So the science and engeneering need multiple teraflop
machines. And, in fact, we have began to use such machines.

2. There are physics limits to the speed of a single processor, which almost being
reached. That is the speed of the light:

speed of light ¢ = 3.0 x 10" cm/sec
wave length for 1GHz 30 cm
wave length for 1GHz in Copper = 9.0 cm

To keep the signal synchronization in a designed processor, the speed of one
processor looks could not higher than 100GHz. The quantum computer is still far
from us.

3. It is increasingly expensive to make a single processor faster. However, a fairly
fast processor is inexpensive.

4. The size of the projects also increase very fast. So far the Lattice QCD uses 2GB
memory for one job. Some molecular problem needs 1.5 to 3 GB memory. Good
compiler also makes the executable to use more memory, like the IBM 90/f95
compiler. Since the memory hierarchy to use large memory with one processor is
very inefficient.

e The SGI Origin 2000 architecture:

TT E‘

o pras 2onor
spERm

L Crosesser
aweba

[E pPraiisss



2.2. PARALLELIZATION AND DATA INDEPENDENCE 27

r-/or e b

N N N

h

- — ——— - —— -

g b

ERIRT ST |,

2.2.2 Parallel Task, Parallelism, Amdhal’s Law

e Parallel task means logically discrete section of computational process which is inde-
pendent of any other concurrent task in the program. So that all such tasks can be
performed simultaneously.

e Not all computational problems can be parallelized.

1. 7 calculation:

T 1 1
I dr ——
A \o Tl

\H\Sg Lo e L e \H i —
0 2+1  Jim 24+1  Joym r2+1 (m—1)/m) x2+1

Each integral is independent of the others. You always can set them as parallel
tasks.

2. Markov chain:
p(n+1)=TP[(n+1) < n]-pn)
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3. Some program can be totally parallelized with very small overlap. Some program
can only partially parallelized. Most of the programs need users to find their
parallelism that means to find where and how you can parallelize them.

e A logical theorem of parallel speedup — Amdahl’s Law:
The parallel speedup means the wall-clock time speedup.
Wall — clock time running on 1 processor

S =
“ " Wall — clock time running on N processors

If the computing performance speed would not change when the program size changed,

then logically we could write
1

=TT N

were

N = Number of the processors

f = fraction of the code’s execution time in parallel
CPU time for parallel execution

CPU time for whole execution

So that f gives a upper bound of parallel speedup:

1
L—f

S, <

For example: f = 90% (0.9)

4 processors : S, = 1/(1-0.9+0.9/4) =3.08

8 processors : S, = 1/(1—0.940.9/4) =4.70
16 processors: S, = 1/(1—-0.9+0.9/16) =6.4
32 processors : S, = 1/(1-0.9+0.9/32) =7.8
64 processors : S, = 1/(1—-0.940.9/64) =8.77

128 processors: S, = 1/(1—0.9+0.9/128) =9.34

Because of the memory hierarchy and cache based architecture, the Amdahl’s law needs
a lot corrections. But the upper bound always is a good reference parameter. It points
that the researcher MIUST find very high parallel faction in the research problem,
otherwise he could not turn to the supercomputing. Or one can say he could not do
modern computational research.

2.2.3 Data Dependence in Loop

A true dependence results from a store to a memory location followed by a fetch from that
location. But only the ”loop-carried” dependence will affect the loop level parallelization.

e Example 1: ( Backward Loop Carried Dependence B-LCD )
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DOJ=2N
A(J) = A(J-1) * 2.0
ENDDO

Here, A(J) depends on a value of A(J-1) which computed in the previous iteration.
That is the ”loop carried” dependence. So that you can not set each iteration of this
loop as the parallel task. Otherwise you will get wrong results.

e Example 2: (Forward Loop Carried Dependence F-LCD )

DO J=1N
A(J) = A(J+1) *2.0
ENDDO

Here, A(J) depends on a value of A(J+1) which assigned before the loop starts running
and will be computed in next iteration. This is also the ”loop carried” dependence.
You can not set each iteration of this loop as the parallel task. However, if you make
an extra copy of array A before the loop starts running, such as:

DO J=1,N
B(J) = A(J)
ENDDO

DO J=1,N

A(J) = B(J+1) *2.0
ENDDO

Then you get the second loop clearly no loop carried data dependence. You can now
parallelize it by adding some ”overhead”.

e Example 3: ( Output Loop Carried Dependence O-LCD )

DO J=1N
A(L(D) = BJ) + C(J)
ENDDO

Here, we do not know the index L(J) contains repeated values or not ( i.e. L(3)=L(12)
= 7 ), then 2 different iterations COULD assign a value to the same address. If you
set the iterations as parallel tasks, then the values output by the loop into the array A
depends on the order in which the iterations are executed. In this case the user MUST
very carefully to analyze his program to determine whether the dependence exits or
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not. User also can fix this dependence by making an extra output copy of A.

DO J=1,N

A _extra(J) = B(J) + C(J)
ENDDO

DO J=1,N
A(L(J))=A_extra(J)
ENDDO

However, the second loop could not be parallelize again.

e Example 4: ( Apparent Loop Carried Dependence A-LCD )

DO J=1N
A(J) = A(L()) + C(J)
ENDDO

Here, we do not know the index L(J) is before, after or repeated. The dependence is
apparent loop carried dependence. In general, the programmer could not take such a
risk to parallelize it except you know the program very clear and firmly know there is
no dependence.

2.3 Shared Memory Parallelization and openMP

A loop which has not any kind loop carried data dependence can be parallelized by adding
some special directives in to your program and let the compiler re-compile it and link the
special library. There are a lot of the different directives libraries offered by different vendors.
The vendor always says his directives are the best one. That makes parallel programming
be very painful. In 1997, KUCK & Associates, Inc. developed a high level directive library
which independent of exact machines and works for Shared Multiple Processor ( SMP )
programming model. So far, it has been accepted by all the major computer industries (
IBM, SGI, HP, Compaq, SUN ) and became a new ”portable” standard. For the portability
reason, we just use the openMP directives here.

Let us follow the examples of the loops to see how to make your program be parallelized:

I File kind_module

MODULE kind_spec_module

implicit none

!

I floating point single and double precision
!
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INTEGER, PARAMETER :: high = selected_real kind(15, 307)
INTEGER, PARAMETER :: low = selected_real kind(6, 37)
INTEGER, PARAMETER :: short= selected_int_kind(4)

!

END MODULE kind_spec_module

!

TET T e e e e e e e e e gy

MODULE SUB_.MODULE
USE kind_spec_module
CONTAINS
SUBROUTINE SUB(A,B,C,N)
integer(low), intent(inout) :: N
real(high), dimension(1:N) intent(inout) :: A,B,C
!
I$OMP PARALLEL DO PRIVATE(J), SHARED(A,B,C,N)
DO J=1,N
A(J) =B(@) + CJ)
ENDDO
I$SOMP END PARALLEL DO
!

END SUBROUTINE SUB
!

END MODULE SUB_MODULE
Jssnnnisnannuisnais

After compiler, and setenv OMP_NUM_THREADS 4, what the machine will do? Let
NP = 4, following figure shows how the openMP makes loop be parallelized.

DO J=1,N/NP

o

DO J=N/NP+1, 2¥N/NP

/\\

DO J=2N/NP+1, 3N/NP

DO J=3N/NP+1, N

e
NATAA
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Some exercises of loop carried dependence
o 1:

DOI=1N
J=J+1
A(D) = B(J)
ENDDO

o 2:

DOI=1,N
IF(A(I).LT. 0.0) THEN
J=J+1
A(1) = B(J)

ENDIF

ENDDO

o 3:

DO WHILE(A(I) .LT. Z)
I=1+1
A(I) = B(I)
ENDDO
o 4:

DO WHILE(I. LT. N)
I=1T+1
A = B()
ENDDO

e 5

DOI=1,N
S= C(I) * B(I)
IF( S.GT. 0.0d00) THEN
T =S + 5.0d00
ELSE
T =S + 4.0d00
ENDIF
AD=A0D+ T
ENDDO
o 6:

DOI=1,N
AJ(D) = A(K(D) + 1.0
ENDDO
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2.4 openMP — Application Program Interface Stan-
dard Directives

e Using openMP directives in proper place of your program:

ISOMP directive [clauses] Fortran90
C$OMP directive [clauses] Fortran77
#pragma omp directive [clauses]  C or C++

where clauses mean one or more directive clauses. Clauses can appear in any order
after the directive name and can be repeated as needed, subject to the restrictions
listed in the description of each clause.

e To compile source code with openMP directives

f90 -mp source.f90
f77 -mp source.f
cc -mp source.c

CC -mp source.C

The SGI Fortran and c compilers have been set a default -MP open_mp=on, and -mp
used to make the compiler to honor tne -MP options.

e Setting the environment to make the parallel code run on multiple processors.

OMP_NUM_THREADS : to set the number of the threads then your job running on
your account could open such number of the processes.

set OMP_.NUM_THREADS /
There are also the other open MP environment variables, OMP_SCHEDULE, OMP_DYNAMIC,
OMP_NESTED . You can get the detail from Fortran 90 manual.
e To run the executable and timming, user just need to type:
time a.out

where time is a shell command which will show you the wall-clock time and CPU time.
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2.4.1 OpenMP Architecture

e openMP involves directives, runtime library and environment variables.

e directives:

1. Parallel Region: PARALLEL and END PARALLEL

'$ OMP PARALLEL [ clause[],] clause]...]
block of code
'$ OMP END PARALLEL

clauses:

— PRIVATE(var], var]...)

— SHARED(var[, var|...)

— DEFAULT(PRIVATE | SHARED | NONE)
FIRSTPRIVATE((var|, var]...)

— REDUCTION ({operator | intrinsic}:var[, var]...)
— IF(scalar_logical expression)

— COPYIN(var[, var]...)

The END PARALLEL is an implied barrier here. When a thread encounters a
parallel region, it asked shell to create a team of threads, and it becomes the
master of the team with a thread number of 0. At the END PARALLEL barrier,
the computing stream waiting for all the threads to complete their work. After
all the threads finished their work, only the master thread of the team continues
execution pass the end of parallel region.

The number of threads it can create is depends on the environment variable.
2. Work-sharing Constructs 1: /$ OMP DO and !$ OMP END DO

'$ OMP DO [clause][,] clause]...]
do_loop
18 OMP END DO [NOWAIT]]

clauses:

— PRIVATE(var,|, var]...)

FIRSTPRIVATE((var|, var]...)
LASTPRIVATE(var|, var]...)

— REDUCTION ({operator | intrinsic}: var[, var]...)
— SCHEDULE(type[, chunk])
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— ORDERED

The OMP DO directive specifies that the iterations of the immediately following
do_loop must be divided among the threads in the parallel region. If there is not
enclosing parallel region, the OMP DO will not work. The loop following OMP
DO can not be a do while or a Do loop without loop control.

3. Work-sharing Constructs 2 : /$ OMP SECTIONS and !$ OMP END SECTION

'$ OMP SECTIONS [clause[[,] clause]...]
[I$OMP SECTION]

block of code

['$ OMP SECTION]

block of code

I$ OMP END SECTIONS [ NOWAIT |

clauses:

— PRIVATE(var], var]...)

FIRSTPRIVATE((var|, var]...)

LASTPRIVATE(var|, var]...)

REDUCTION ({operator | intrinsic}: var[, var]...)

The OMP SECTION directive specifies that the enclosed sections of code are to

be divided among threads in the team. It is a noniterative work-sharing construct.
Each section is executed once by a thread in the team.

The OMP END SECTION is a barrier here. Threads that complete execution of
their sections wait at this point until all the threads finished their execution. If a
NOWALIT is specified, the waiting could be canceled.

4. Work-sharing Constructs 3 : OMP SINGLE and OMP END SINGLE

I$OMP SINGLE [clause][,] clause]...]
block
ISOMP END SINGLE [NOWAIT]

clauses:
— PRIVATE(var], var]...)
— FIRSTPRIVATE(var|, var]...)

The OMP SINGLE directive specifies that the enclosed code is to be executed by
only one thread in the team. The OMP END SINGLE is a barrier. Threads in
the team which are not executing wait at this point unless NOWAIT is specified.

5. Combined parallel work-sharing constructs:
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— I$OMP PARALLEL DO and !$ OMP END PARALLEL DO
— I$SOMP PARALLEL SECTIONS, !$ OMP SECTION, ... !$ OMP END PAR-
ALLEL SECTIONS

6. Synchronization Constructs:

— ISOMP BARRIER: to synchronize all the threads in a team. When any
thread encounters a barrier, it waits until all other threads in the team have
reached the same point.

— 1$OMP MASTER and !$ OMP END MASTER: The code enclosed is exe-
cuted by master thread only. The other threads in the team skip the enclosed
code and continue next execution. There is not barrier.

— I$SOMP CRITICAL and !$ OMP END CRITICAL: These directives restrict
access to the enclosed code to one thread at a time. A thread waits at the
beginning of a critical section until no other thread in the team is executing
a critical section. The critical section could has a name.

— ISOMP ATOMIC: The OMP ATOMIC ensures that a specific memory
location is updated atomically.

— I$OMP FLUSH: The OMP FLUSH identifies synchronization points at
which thread-visible variables are written back to memory.

— ISOMP ORDERED and !$ OMP END ORDERED: The code enclosed
within these directives is executed in the orde in which it would be executed
in a sequential execution.

7. Data Environment Constructs — /$OMP THREADPRIVATE(/cb/[,/cb/]...)

The OMP THREADPRIVATE makes named common blocks private to a thread.
Each thread executing a THREADPRIVATE directive receives its own private
copy os named common block, which is available to it in any routines within the
scope of a application.

8. Data Scope Constructs: exactly they are attribute clauses:

— PRIVATE(var], var]...):  The private clause declares variables to be private
to each thread in a team.

— SHARED(var[, var]...): The shared clause makes variables shared among all
threads in the team. All threads access the same storage area for the shared
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data.

— DEFAULT(PRIVATE | SHARED | NONE):  The default clause allows user
to specify a PRIVATE, SHARED or NONE default scope attribute for all
variables in a lexical extent of any parallel region.

— FIRSTPRIVATE(var|, var|...): The firstprivate clause provides a superset
of the functionality provided by the PRIVATE clause.

— LASTPRIVATE(var[, var|...): When the lastprivate clause appears on a DO
or SECTIONS, the thread that executes the sequentially last iteration ( or
last section ) updates the version of the objects it had before the structs.

— REDUCTION ({operatro | intrinsic}: var[, var|...) :  This clause performs
m%mcoao:ocﬁrm<mimzmmmvm9mmm§§ﬁrmovogﬂoﬁAl_JJ*ﬂ...... YOW

intrinsic function ( MAX, MIN, TAND, IOR...).

— COPYIN(var|, var]...): The COPYIN only used for THREADPRIVATE
common blocks. A copyin clause on a parallel region specifies that the data
in the master thread of the team be copied to the threadprivate copies of the
common block at the beginning of the parallel region.

e OpenMP environment variables:

OMP_NUM_THREADS: To set the number of the threads which you can open.
setenv OMP_NUM_THREADS J

OMP_SCHEDULE: To set the schedule type.

setenv OMP_SCHEDULE ”dynamic”

OMP_DYNAMIC: To set the throughput mode in dynamic.

setenv OMP_DYNAMIC TRUE

OMP_NESTED: To set the nested parallelism.

setenv OMP_NESTED TRUE

e Runtime openMP functions:

— OMP_SET_NUM_THREADS()
OMP_GET_NUM_THREADS()

OMP_GET_MAX_THREADS()
OMP_GET_THREAD_NUM()
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OMP_GET_NUM_PROCS()
OMP_INPARALLEL()

— OMP_SET_DYNAMIC()
OMP_GET_DYNAMIC()

— OMP_SET_NESTED()
OMP_GET_NESTED()

e debug: User can use -g option in compiling time to allow the debug. User follows the
fortran 90 manual can do it at all.

e Performance analysis: Most of the machine offer performance analyzer. On the Origin
2000 the performance analyzer is ”perfex”. User can read the manual to get the details.

2.5 Examples

1. To fell the parallel programming:
N

IFile kind-module

MODULE kind_spec_module

implicit none

!

I floating point single and double precision

!

INTEGER, Parameter::high = selected_real kind(15,307)
INTEGER, Parameter::low = selected_real _kind(6,37)
INTEGER, Parameter::short= selected_int_kind(4)

!

END MODULE kind_spec_module

!

Program fell

Use kind_spec_module

integer(short) :: I, myid, Num

integer(short), Parameter:: N=16

integer(short), dimension(1:N):: ID

!

ISOMP PARALLEL DO Private(I,myid,Num), SHARED(ID)
DOI=1,N

myid = OMP_GET_THREAD_NUM()
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ID(I) = myid

ENDDO

'$ OMP END PARALLEL DO

write(6,*) ( I, ID(I), I=1,N)

!

END PROGRAM feel
A A R AR AR R

This program will show you which iterations are performed by the thread with thread
ID myid.

. m calculation: loop parallelization and REDUCTION clause:

I File kind_module

MODULE kind_spec_module

!

INTEGER, PARAMETER:: high = selected_real kind(15, 307)
INTEGER, PARAMETER:: low = selected_real kind(6,37)
INTEGER, PARAMETER:: short= selected_int_kind(4)

INTEGER, PARAMETER:: long = selected_int_kind(12)
!

END MODULE kind_spec_module

PROGRAM pi

USE kind_spec_module !

I Use 1000000 as the integral steps. You can change it to see
! what kind accuracy of pi you can get

!

INTEGER(long), PARAMETER:: N=1000000
INTEGER(long) :: I

real(high):: x, w, sum, pi

real(high), function:: f(x) = 4.0_high / ( 1.0_high + x*x)
!

w = 1.0_high / N

sum = 0.0_high

I$SOMP PARALLEL DO private(x,I), SHARED(N)
1$0MP& REDUCTION(+:sum)

DOI=1,N
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x=w* (I-0.5high)

sum = sum + f(x)

ENDDO

'$SOMP END PARALLEL DO
pi = w * sum

write(6,*) pi, N

end program pi

This program calculates the integral

1 1
ang.\ dr —
0 14 22

Changing N use can get different accuracy of 7.

3. m calculation 2:

independent routines parallelization

I File kind_module

MODULE kind_spec_module

implicit none

!

INTEGER, parameter:: high = selected_real kind(15,307)
INTEGER, parameter:: low = selected_real kind(6,37)
INTEGER, parameter:: short= selected_int_kind(4)
INTEGER, PARAMETER:: long = selected_int_kind(12)
!

END MODULE kind_spec_module

|

MODULE SUB

use kind_spec_module
CONTAINS

function f(x)
real(high) :: f, x

!

f = 4.0_high/(1.0_high + x*x)
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end function f
A AR AR AR AR AR

SUBROUTINE SUB_INTEGRAL(NO, NF, w, sum)
real(high), intent(inout):: w, sum, x

real(high), function :: f(x) = 4.0_high / ( 1.0-high + x*x )
INTEGER(long), intent(inout):: NO, NF, I

!

DO I = NO, NF

x = w¥( I-0.5_high )

sum = sum + f(x)

ENDDO

!

END SUBROUTINE SUB_INTEGRAL

!

END MODULE SUB
SniInUannEnn N

PROGRAM PI

USE kind_spec_module

USE SUB

INTEGER(long), PARAMETER:: N = 1000000
INTEGER :: myid, IN

INTEGER(long) :: NO, NF

real(high) :: w, sum, pi

w = 1.0_high/N

ISOMP PARALLEL DEFAULT(PRIVATE) SHARED(N,w),LASTPRIVATE(IN) &
I$OMP & REDUCTION(+:sum)

IN = OMP_GET_THREADS_NUM({)

myid = OMP_GET_NUM_THREAD()

NO = myid * N/IN + 1

NF = N0 + N/IN

CALL SUB.integral(NO, NF, w, sum)

ISOMP END PARALLEL

pi = w¥sum

print*, pi, N, IN

END

This program shows that the PARALLEL region directive can be used for exploiting
coarse-grained parallelism. It is important in the real problem solution.
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4. Matrix multiplication:

! File kind_spec_module

MODULE kind_spec_module

implicit none

!

INTEGER, PARAMETER:: high = selected_real_kind(15, 307)
INTEGER, PARAMETER:: low = selected_real kind(6,37)
INTEGER, PARAMETER:: short= selected_int_kind(4)

|

END MODULE kind_spec_module
LTI

PROGRAM mm

USE kind_spec_module

INTEGER(short), PARAMETER, :: NP=4
INTEGER(short), PARAMETER:: maxrows=1000, maxcols = 1000, maxc=maxcols/NP
real(high), dimension(1:maxrows, 1:maxcols):: a
real(high), dimension(1:maxrows, 1:maxc, 1:NP):: b,c
INTEGER(short) :: n, 1,1, j, k

!

ISOMP PARALLEL SHARED(a, b, c)

ISOMP DO PRIVATE(Lj,L,n)

DO n=1, NP

1=(n-1)*maxc

DO j=1,maxc

DO i=1,maxcols

a(i,j+l) =1 + 0.023_high*;

ENDDO

ENDDO

ENDDO

I$OMP END DO NOWAIT

!

ISOMP DO PRIVATE(i,j,n)

DO n=1, NP

DO j=1,maxc

DO i=1, maxrows

c(i,j,n) = 0.0_high
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b(i,j,n)=0.11_high*i + 1.19_high*(j+(n-1)*maxc)
ENDDO

ENDDO

ENDDO

1$OMP BARRIER

|

Parallel multiplication
|

ISOMP DO PRIVATE(i,j,k,n)
DO n=1,NP

DO j=1,maxc

DO k=1,maxcols

DO i=1,maxrows
c(i,j,n)=c(ij,n)+a(i,k)*b(k,j,n)
ENDDO

ENDDO

ENDDO

ENDDO

1$SOMP END PARALLEL
write(6,*) ¢(10,20,1), ¢(20,30,1), ¢(40,50,1)
END Program mm

This program multiplies 2 matrices. It shows the NOWAIT clause, and OMP DO.
You’d better do not use OMP_NESTED environment.

2.6 Lab exercises

1. Using ”vi” to write the first example as feel.f
f90 -O2 -mp feel.f
setenv OMP_NUM_THREADS 4

a.out

To get the feeling how the machine parallelly executes your job.

2. Using "vi” to write the loop parallel 7 calculation program as pi_1.f.
f90 -O2 -mp pi_1.f
setenv OMP_NUM_THREADS 4

time a.out

To see how about the parallel speed-up. Then increase the integral steps into 10000000
to see the change of accuracy and speed-up.
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3. Using "vi” to write the 4th example as mm.f
90 -O2 -mp feel.f
setenv OMP_NUM_THREADS 4
time a.out
setenv OMP_NUM_THREADS 1

time a.out

To see how the parallelization speeds up the performance.
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Distributed Memory Parallelization
and MPI

1. Parallel Programming modes and parallelism levels.

2. Message Passing and the Message Passing Interface Standard ( MPI ).
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. Laboratory exercises

3.1 Parallel Programming Modes and message passing

There are many different architectures of the supercomputers, some supercomputers are
just ”clusters”, that means they are one of many almost independent machines connected
together, even PC clusters. According supercomputing 2000, the cluster becomes a major
machine architectures now. These machines have distributed memory, user can not use data
which stored on a machine from the other machines directly.

3.1.1 The theoretical parallel programming modes

Let us first to see what kind parallel programming modes we can have. Since the program
is built by the instructions and data, we can assume:

e SISD mode:

Single Instruction with Single data. This mode is used in most serial programming and
shared memory parallel programming. User can determine the results always correct.

e MISD mode:

Multiple Instruction with Single Data. This is the typical shared memory mode. In
previous chapter we parallelized 7 calculation by using this mode. In this mode user
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needs to take care of data independence, instruction synchronization. However, since
all the data are used the same address table, the program almost can be interpreted
from a serial program. So it is relatively simple to program.

SIMD mode:

Single Instruction with Multiple Data. This is a typical distributed memory mode.
Each machine ( or node ) runs the same instruction, with different data. So that the
user must separate his exact problem into several small problem and write a program
to solve each small problem on each node. That is so-called data decomposition.
In runtime when one node needs the data located on the other nodes, user needs
to consider the get ( send ) the data by "message passing” software. This mode is
relatively complicated since the data decomposition and message passing. However,
since each node is used to solve a small similar problem, the program is similar to
the serial program. Since each node runs the same instruction, the synchronization is
relatively simple.

MIMD mode:
Multiple Instruction with Multiple Data. This is also typical distributed memory mode.

User needs to take care of the synchronization of the instruction, as well as, take care
of the message passing. This is more complicated mode.

The data decomposition will give the users a big benefits which are come from the memory

hierarchy and threads spawning-joining procedure.

3.1.2 Fine-Grain, Coarse-Grain parallelism and parallelism levels

We can observe different parallelism levels in a program. We must chose what kind paral-
lelization we want to use.

e instruction level parallelism:

In general, if your program has independence in less than 50 instruction level, we call
it instruction level parallelism. It is not used for running on multiple processors, that

will really wast your computer resource. But it is used to feed the special (RISC or
VLIW) CPU architecture. We will discuss it later ( chapter 5).

loop level parallelism:

In the previous chapter we discussed about the loop level parallelism which is very easy
to find in a special program. However, in the exercises we also see that, the speed up
is depends on the size of the loop. For example, if the matrix to matrix multiplication
only for 20 x 20 matrix, you will get low speed up and wast some computer resource.
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In most of the cases different iterations of the same loop use the same data set. So it
is very nice to be considered as a SISD or MISD mode.

Most of the Automatic Parallelizing Option ( APO ) are working on the loop level
parallelism. For most of the small loops which exist in a real program APO will
increase the wall clock time and can not guarantee the results. That is why currently
I do not encourage users to use the APO even in the small example programs it works
well.

routine level parallelism:

In previous chapter we also discussed a routine level parallel example — a 7 calculation
program. Whatever in the C C++ or Fortran language, the routine always is a inde-
pendent block of the whole program both in instruction and data. So that the routine
level parallelism is easy to be a SIMD mode. Or if you declared the SHARED(...),
it also could be a SISD mode.

multiple routines level parallelism:

We can also find multiple routines parallelism in many applications. That is a good
SIMD parallelization mode, or if you declared the SHAREDJ(...), it also could be a
SISD mode.

program level parallelism:

If your scientific-engineering problem could be separated into multiple small pieces
and then calculate them to get whole results, then your program will have a program
level parallelism. For example, most of the physics interactions are nearest neighbor
interactions, so most of the motion equations ( Partial Differential Equations ) can
be separated into small grids with the neighbor’s boundary together. You can solve
the equations on each computer node need only small grid data set with neighbor’s
boundary data set together. So that your whole program has the parallelism and data
independence. The program level parallelism is a good SIMD mode, even it is almost
a SPMD ( Single Program Multiple Data ) mode. However, the neighbor’s bound-
ary exchanging needs message passing. Each node still correlated with the physics
neighbors.

This mode is widely be used to solve real scientific and engineering problems. In next
chapter we will discuss this mode with an example of partial differential equations.

e job level parallelism:

Some long distance interaction problem, ( such as gravity ), researchers used to run
multiple jobs on the shell, and each job is serial ( not correlated with others ). It is
typical MIMD mode.
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e Fine-Grain and Coarse-Grain parallelism:

In general, if the parallelism is larger than 50 instructions, but relatively not too large,
we call it fine-grain parallelism. According to Amdahl’s law, you MUST have a lot
of the fine-grain parallelism you could get the parallel speed up. Most of the loop
level parallelism belong to fine-grain parallelism. Instruction level parallelism is a very
fine-grain parallelism.

If the parallelism is really large, we call it coarse-grain parallelism. The Amdahl’s law
predicts that the coarse-grain parallelism could get better speed up.

Fine-grain parallelism

Coarse-grain parallelism
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3.2 Message Passing and the Message Passing Inter-
face Standard ( MPI )

Message passing is a paradigm used widely on certain classes of parallel machines especially
those with distributed memory. Although there are many variations, the basic concept of
processes communicating through messages is well understood. In last ten years, many
vendors have developed their own shared memory directives and message passing softwares.
The existing message passing systems are, for example, NX/2, Express, Vertex, Canopy, P4,
PARMACS, PICI, and PVM. The variations make the distributed parallel programming be
very painful. It often happened that even one did invest long time to write a parallel program
for some computer, before one get much use to get his job done, either the environment
changed or the computer company goes out. So the users always dreams that one can write
a program which works on any kind supercomputer. That means we need a real ”standard”
which must be accepted by all vendors.

The MPI standardization effort involved about 60 people from 40 organizations mainly
from the United States and Europe. Thus the MPI has been strongly influenced by the
previous message passing softwares and has been accepted by most of the supercomputer
vendors.

A preliminary draft proposal of MPI1 was put forward by Dongarra, Hempel, Hey and
Walker in November 1992, and a revised version was completed in February 1993. The MPI
working group met every 6 weeks for two days throughout the first 9 months of 1993 and
presented the draft MPI standard at the supercomputing 93 conference in November 1993.

3.2.1 MPI — Large and small

e What is included in the standard:

Point-to-point communication
Point-to-group communication
Group-to-point communication
Collective operations and process groups
Communication contexts

Process topologies and environmental management

NS otk W =

Profiling interface

e MPI is built for high level programming languages, such as C, C++ and Fortran. All
the routines work as a library in the languages. All the messages use the same data
types as in the languages. So we have MPILINTEGER, MPI_REAL, MIP_REALS,
MPI_LOGICAL, MPI.CHARACTER, MPI.COMPLEX ....

e Large:

There are 128 MPI library routines in MPI1, there are more routines in MPI2.
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e Small:

6 to 9 of the 128 routines are enough for most of the applications.

MPI_INIT( arguments )
MPI_COMM_RANK( arguments )
MPI_COMM_SIZE( arguments )
MPI_FINALIZE( arguments )
MPI_SEND( arguments )
MPI_RECV( arguments )
MPI_BCAST( arguments )
MPI_REDUCE( arguments )
MPI_GATHER( arguments )

© e NS e W N

e Buffer: MPI uses buffer — a piece of the memory to store the messages. The message
will be collected to buffer before it being sent. As well as, the received messages also
collected in buffer before it being contributed to the corresponding memory addresses.

3.2.2 To learn the 8 basic routines:

1. MPI_INIT(Ierror) for Fortran

where lerror is a Integer. All MPI programs MUST contain a call to MPI_INIT; This
routine initialized the multiple threads by communicating with shell. This routine
must be called before any other MPI routine is called.

2. MPI_ COMM RANK(COMM, RANK, Ierror)

where lerror, Rank and Comm are integer. This routine accesses the communicator’s
group. The COMM = MPI.COMM_WORLD is a special integer describes the whole
group, the RANK = myid, shows rank of the working thread from 0 to number of
threads - 1.

3. MPI_.COMM _SIZE(COMM, SIZE, Ierror)
where COMM, SIZE and Ierror are integer. This routine used to check the communica-

tor’s group size to see if it is the same as expected. The COMM = MPI_.COMM_WORLD
describes the communicator’s group, SIZE = number of the threads exist now.
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4. MPI_FINALIZE(Ierror)

where Ierror is a integer. All the fortran routines have a Ierror as one of the arguments
just as the C routine’s return. If the routine completed correctly, the Ierror returns zero,
otherwise, non-zero. This routine cleans up all MPI states. Once this routine is called,
no MPI routine may be called. The user must ensure that all pending communications
involving a process complete before the process calls MPI_FINALIZE.

In other hand, user must use MPI_FINALIZE to finish the MPI processes when the
program completed, otherwise the machine will keep MPI processes run and wast the
supercomputer resources.

5. MPI_SEND(buf, count, datatype, dest, tag, comm, Ierror)

where

buf: choice, initial address of send buffer ( address )

count: integer, number of elements in send buffer ( no negative )

datatype: handle( MPI data type ), the data type of each send buffer element
dest: integer, rank ( ID ) of destination

tag: integer, the message tag for recognization

comm: handle ( i.e. MPI.COMM_WORLD ), the communicators

Ierror: integer, the return value.

This is the basic point-to-point communication sending routine. The send buffer spec-
ified by the MPI_SEND operation consists of count successive entries of the type indi-
cated by datatype starting with the entry at address buf.

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information called message envelope which
include:

source, determined by the identity of the message sender
destination, specified by dest

tag, specified by tag. This integer can be used to distinguish different type of the
messages.

communicator, specified by comm, the communication group.

6. MPI_SECYV (buf, count, datatype, source, tag, comm, status, Ierror)

where:

buf: address, initial address of receive buffer ( choice )
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count: integer, number of elements in receive buffer ( nonegative )
datatype: handle ( MPI data type ), datatype of each receive buffer element
source: integer, the rank ( ID ) of the source

tag: interger, message tag for recognization

comm: handle (i.e. MPI.COMM_WORLD ), communicator

status: status object, can be read by MPI_GET_COUNT.

Ierror: integer, the routine return

This is one of the basic point-to-point communication receive routine. The receive
buffer consists of storage containing count consecutive elements of type specified by
datatype, starting at the address buf. The length of the received message must be
less than or equal to the length of the receive buffer. The selection of a message
by a receive operation is governed by the value of the message envelope. A message
can be received by a receive operation if its envelope matches the source, tag, and
comm values specified by the receive operation. The receiver may specify a wild card
MPI_ANY_SOURCE value for source, and/or MPI_ANY _TAG value for tag, indicating
that any source and/or tag are acceptable.

The status is an array of integers of size MPI_.STATUS_SIZE. The two constants
MPI_SOURCE and MPI_TAG are the indices of the entries. Using MPI_.GET_COUNT(status,
datatype, count) can read the receive status.

7. The MPI_SEND(...) and MPI_RECV({(...) are blocking communication mode.
It does not return until the message data and envelope have been safely
stored away so that the sender is free to access and overwrite the send
buffer. The message might be copied directly into the matching receive buffer, or
it might be copied into a temporary system buffer. Message buffering decouples the
send and receive operations. On the other hand , message buffering can be expensive,
as it entails additional memory to memory copying, and it requires the allocation of
memory for buffering.

MPT offers the choice of several communication modes that allow user to control the
choice of the communication protocol.

8. MPI BCAST(buf, count, datatype, root, comm, Ierror)

where:

buf: address, starting address of the buffer
count: integer, number of the entries in buffer
datatype: MPI data type in the buffer

root: integer, the rank of the broadcast root
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10.

comm: handl, the communicator — communication group.

MPI_BCAST is a point to group communication routine. It broadcasts a message from
the process with rank root to all processes of the group, itself included. It is called
by all members of group using the same arguments for comm, root. On return, the
contents of root’s communication buffer has been copied to all processes.

MPI REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, Ierror)

where:

sendbuf: address, the address of send buffer

recvbuf: address, the address of receive buffer, significant only at root
count: integer, the number of elements in send buffer

datatype: MPI data type, the data type of the elements in send buffer
op: operator, the reduce operation ( MPI_SUM, MPI_PROD, MPI_MAX...)
root: integer, rank of root ( sender ) process

comm: handle, communicator

Ierror: integer, the return

MPI_REDUCE is a group to point communication routine. It combines the elements
sent from the send buffer of each process in the group comm, using the operation op,
and return the combined value in the output buffer recvbuf of the process with the
rank root.

User also could consider some other basic group to point communication routines such
as MPI_.GATHER(...).

MPI_GATHER (sendbuf, sendcount, sendtype, recvbuf, recvcount, recv-
type, root, comm, Ierror)

where:

sendbuf: address, the address of send buffer

sendcount: integer, the number of elements in send buffer

sendtype: MPI data type, the data type of the elements in send buffer

recvbuf: address, the address of receive buffer, significant only at root

recvcount: integer, the number of elements in receive buffer

recvtype: MPI data type, the data type of the elements in receive buffer

root: integer, rank of root ( receiver ) process

comm: handle, communicator
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Ierror: integer, the return

Each process ( root process included ) send the contents of its send buffer to the root
process. The root process receives the messages and stores them in rank order.

3.3 Distributed Memory Parallel Examples

Sending and receiving of messages by processes is the basic MPI communication mechanism.
The basic point to point communication operations are MPI_.SEND(...) and MPI_RECV(...).
Before you can use MPI routines, you MUST initiate the MPI first.

1. Example 1: Initiate and Ranks

Program Hello

!

INCLUDE ’mpif.h’

Character(46,1) :: x

integer :: myid, num_proc, ierror, ierr

' CALL MPIINIT (ierr)

CALL MPI.COMM_RANK(MPI_.COMM_WORLD, myid, ierr)
CALL MPI.COMM_SIZE(MPI_COMM_WORLD, num_proc, ierr)
!

print*, 'number of the processors are: >, num_proc

x = "Hello every body please distinguish yourselves’

print*, x, myid

END PROGRAM hello

Using the commands to compile and run it ( on SGI 2000 ):
190 hello.f90 -lmp1

mpirun -np 4 a.out

You will get the print such as:

The number of processors are: 4

The number of processors are: 4

The number of processors are: 4

The number of processors are: 4

Hello every body please distinguish yourselves 1

Hello every body please distinguish yourselves 2
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Hello every body please distinguish yourselves 0

Hello every body please distinguish yourselves 3

The mpirun command makes the mpi executable run on the machine. The option
-np 4 means you require number of the processors is 4. Of course, you can claim
more processors. However, the number of the processors MUST match your data
decomposition.

Here the myid shows the ID, or RANK of each processor or thread.

Example 2: 7 calculation and integral

1

1 1
ﬁH\o &a\@v”\o &a%o*g

I File kind_spec_module

MODULE kind_spec_module

implicit none

!

INTEGER, PARAMETER:: high = selected_real_kind(15, 307)
INTEGER, PARAMETER:: low = selected_real kind(6,37)
INTEGER, PARAMETER:: short= selected_int_kind(4)

!

END MODULE kind_spec_module
T T T T T

MODULE FUNC

use kind_spec_module
CONTAINS

function f(x)

real(high) :: f, x

!

f = 4.0_high/(1.0-high + x*x)
end function f

END MODULE FUNC
mnuisnnnisnnnisssInuiiis R

PROGRAM PI

USE kind_spec_module

USE FUNC

INTEGER, PARAMETER:: N_init = 1000000
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INTEGER :: myid, N, numprocs ierr

real(high) :: w, sum, xpi, h,mypi ,x

call MPI_INIT (ierr)

call MPI_.COMM_RANK(MPI_COMM_WORLD, myid, ierr)
call MPI_.COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
n=numprocs*N _init

call MPI.BCAST(n, 1, MPILINTEGER, 0, MPI.COMM_WORLD, ierr)
I calculate the interval size

h = 1.0.high / n

sum = 0.0_high

do i = myid + 1, n, numprocs

x = h * (i - 0.5_high)

sum = sum + f(x)

enddo

mypi = h * sum

print*, mypi, myid

!

! collect all the partial sums

!

call MPL.REDUCE (mypi, xpi, 1, MPI.REALS, &
MPISUM, 0, MPI.COMM_WORLD, ierr)

if (myid .eq. 0) then

write(6, *) xpi, abs(xpi - 3.141592653589793238462643 )
endif

call MPI_FINALIZE (ierr)

END PROGRAM PI

The same program runs on each processor, with "myid” to compute in different area.
Then sum the results together.
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0

0 0.050.10.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Using the shell commands to compile and run it ( on SGI 2000 ):
190 hello.f90 -lmps

mpirun -np 4 a.out

You can get:
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0.785398100897486 2

0.785397975897464 3

0.78539822589745 1

0.78539835089743 0

3.14159265358983 8.742274371087433E-08

Using more processors you can much higher precision.

3. Example 3: Data decomposition — computing matrix-matrix multiplication A-B=C

e data decomposition 1:

C=A-Bi®oA - B,®---®A B,

e data decomposition 2:

\ww \ww mH mw

As Ay By By

QHA\:Mwwl_l\wwmwvmwm\:mwl_l\wwmgv
®(A; - By + Ay - B3) ® (A; - By + Ay - By)

Program mm_1.f90
L T L

! File kind_spec_module

MODULE kind_spec_module

implicit none

!

INCLUDE ’mpif.h’

INTEGER, PARAMETER:: high = selected_real_kind(15, 307)
INTEGER, PARAMETER:: low = selected_real kind(6,37)

INTEGER, PARAMETER:: short= selected_int_kind(4)
!
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END MODULE kind_spec_module
N a N

PROGRAM mm

USE kind_spec_module

INTEGER, PARAMETER:: root=0, nrow=1000, ncol=1000, NP=4, NC=ncol /NP
INTEGER :: myid, N, numprocs, ierr, i, j, NBO

real(high), dimension(1:nrow, 1:ncol) :: A, C

real(high), dimension(1:nrow, 1:nc) :: b, ans

call MPIINTT (ierr)

call MPI_.COMM_RANK( MPI_.COMM_WORLD, myid, ierr )
call MPI.COMM_SIZE( MPI.COMM_WORLD, numprocs, ierr )
!

I To create the matrices A and B which is not necessary in a exact routine
!

NBO = myid*NC

DO j=1,ncol

DO i=1,nrow

a(i,j) =i + 0.023_high*j

ENDDO

ENDDO

DO j = 1,nc

DO i =1, nrow

b(i,j) = 0.11 high*i + 1.19_high*(j+NBO0)

ans(i,j) = 0.0-high

ENDDO

ENDDO

!

I Start Matrix to matrix multiplication

!

DO j=1,nc

DO i =1, nrow

DO k = 1, nrow

ans(i,j) = ans(i,j) + a(i,k)*b(k,j)

ENDDO

ENDDO

ENDDO

!

I Passing ans to root and directly put them together

99
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!

ncount = nrow*nc

call MPI_GATHER (ans,ncount, MPI_ REALS,C,ncount, MPI.REALS, &
root, MPI.COMM_WORLD,jierr)

!

! Write out to check the results

!

IF (myid .EQ. 0) THEN

write(6,*) ¢(10,20), ¢(20,30), c(40,50)
ENDIF

!

call MPI_FINALIZE(ierr)

!

END PROGRAM mm

Using the shell commands to compile and run this program
90 mm.f90 -lmps

mpirun -np 4 a.out

You can get:

1907122.455 3070659.305 6111733.005

It must be the same as you get in the shared memory case by mm.f90

4. Example 4: Program mm_2.f90 the second data decomposition algorithm — blocking
multiplication:

QHA\QHmwlTxﬁwmwvm@A\%Hmwl_l\%wm%v
©(Az - By + Ay - By) @ (A3 - Bo + Ay - By)

! File kind_spec_module

MODULE kind_spec_module

implicit none

!

INCLUDE ’mpif.h’

INTEGER, PARAMETER:: high = selected_real_kind(15, 307)
INTEGER, PARAMETER:: low = selected_real kind(6,37)
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INTEGER, PARAMETER:: short= selected_int_kind(4)
!

END MODULE kind_spec_module
N a N

PROGRAM mm

USE kind_spec_module

!

! NP = NPL * NPR

!

INTEGER, PARAMETER:: root=0,nrow=1000,ncol=1000,NP=4,NPL=2NPR=2, &
NC=ncol/NPL ,NR=nrow/NPR

INTEGER :: myid, N, numprocs, ierr, i, j, NCB, NRA
real(high), dimension(1:nr, 1:nc, NP) :: C

real(high), dimension(1:nr, 1:nc) ::al,a2, b1, b2, ans

!

call MPLINIT (ierr)

call MPI_.COMM_RANK( MPI_.COMM_WORLD, myid, ierr )
call MPI_.COMM_SIZE( MPI.COMM_WORLD, numprocs, ierr )
!

I To create the matrices A and B which is not necessary in a exact routine
I Exact routine needs only to input matrix correctly.

! where node 0 uses A1, A2 and B1,B3

! node 1 uses A1, A2 and B2,B4

! node 2 uses A3, A4 and B1,B3

! node 3 uses A3, A4 and B2,B4

NRA =0

IF( myid .GE. 2) NRA = NR

NCB = mod(myid,2)*NC

!

DO j=1,nc

DO i=1,nr

al(i,j) = i+NRA + 0.023_high*j

a2(i,j) = i+NRA + 0.023_high*(j+NR)

ENDDO

ENDDO

!

DO j=1nc

DOi=1,nr

61
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b1(i,j) = 0.11_high*i + 1.19_high*(j+NCB)

b2(i,j) = 0.11_high*(i+NR) + 1.19_high*(j+NCB)
ans(i,j) = 0.0-high

ENDDO

ENDDO

!

I Start Matrix to matrix multiplication

!

DO j=1,nc

DOi=1,nr

DOk=1,nr

ans(ij) = ans(i) + al(ik)*b1 (k) + a2(ik)*b2(k,])
ENDDO

ENDDO

ENDDO

!

I Passing ans to root and directly put them together
!

ncount = nr*nc

call MPI_.GATHER (ans,ncount, MPI_REALS,C ncount, MPI_.REALS, &
root, MPI.COMM_WORLD,jierr)

!

I Write out to check the results.

! User’d better to understand the structure of result C
!

IF(myid .EQ. 0) THEN

write(6,*) ¢(10,20,1), ¢(20,30,1), ¢(40,50,1)

ENDIF

!

call MPI_FINALIZE(ierr)

!

END PROGRAM mm

Using the shell commands to compile and run this program you can get the same
results as the previous program.

90 mm.f90 -lmp1
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3.4

mpirun -np 4 a.out
You can get:
1907122.455 3070659.305 6111733.005

Lab Exercises

Using ”vi” to write the first example as hello.f90
90 -0O2 -Impi hello.f90

mpirun -np 4 a.out
To get the feeling how the MPI opens 4 processes for you.

Change -np 4 to -np 6, to see how many processes you get.

Using ”vi” to write the loop parallel 7 calculation program as pi_2.f90.

90 -O2 -lmpi pi_2.f

time mpirun -np 4 a.out

To see how the parallelization speeds up the performance. Change -np 4 into -np 6 to

see how the multiple processes can increase the accuracy.

sing "vi” to write the first example 3 as mm_1.f90
f90 -O2 -lmpi mm_1.f
time mpirun -np 4 a.out

To see how the parallelization speeds up the performance. Compare the results with
the openMP program.
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Chapter 4

Parallel Programming — To Solve
Partial Differential Equations:

1. Partial Differential Equations and Algorithms.
2. Jacobi’s method and loop level parallelization ( openMP ).
3. Gauss-Seidel method and routine level parallelization ( openMP )

4. Gauss-Seidel method and message passing — distributed programming (
MPT )

5. Laboratory exercises

4.1 Partial Differential Equations and Algorithms

4.1.1 Computational Science and PDE

Most of the computational sciences are based on the Partial Differential Equations ( PDE
). Solving PDE with some initial conditions or some boundary conditions we get the under-
standing and predictions of scientific phenomena. For example:

e Navier Stokes equations (CFD):

@l
% — Fx @ — VI + V27

Vi = 0

e Diffusion equation ( Continuous medium ) :

ou 0 ou
e Gl
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e Schrodinger equation (Quantum Mechanics):

@.w% = V) + V(D)

e Langevin equation ( Molecular dynamics ):

0¢ _ OVig]
o o0p +1n(t)

e Lagrange equation ( Fractal )

OL & 0 0L 90Ol

i e

06 = 0z, 06 0t og

After some analytical steps most of the scientific PDE will be reduced to the typical
elliptic equations.

e clliptic equation ( e.g. Poisson ):

~

L-¢(@) =p(@) {eg V(7)=p) }

4.1.2 Relaxation algorithm and loop parallelization

The relaxation method used to be employed to solve the elliptic equation. It is wildly used
since most of the physics equations could be reduced to a elliptic equations

e Poisson Equations and a Simple Navier-Stokes Equation Example:

Let us consider a simple 2 dimension CFD basic equations — 2-D Navier-Stokes equa-
tions such as:

=il

m — —
U-VU = —AU
t - R,

Y 0

o)
=il
I

The time direction evolution of the velocity field is simple:

ou, ou, 1 0%*u, 0%u,
n — o\Uo 0 - dt = - dt
u o (u o + v %@v +mmﬁmgm+®@wv
ov ov 1 0%, 0%
n — o\ Vo . o : - dt e 2 ° - dt
v V(v ma+§ %@v +mmmmam+®©wv

So if we know a initial state {u,(z,y),v,(z,y)} and set a vary small time direction skip
step dt, we can get the new state {u,(x,y),v,(z,y)}. However, that is not enough.
The new state MUST satisfy the continuity condition:

ou, Ov,

m&._.m@Ho
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Since the change of the velocity filed {Ju, dv} is a vector filed, we can introduce a scale
field ¢ to describe this vector field such as:

Vo = {du,dv}
Uy, = U, +O0u
U, = U, + v

Substituting this equation into the new state continuity condition equation we get:
VZp =0

That is a simple Poisson equation. So that finally, to solve Navier-Stokes equation
goes to solve a Poisson equation. Repeat this procedure you get the evolution of the
velocity field.

Solving equation — minimization problem:

L-9(T) =p(@) {eg V6(T)=p@) }
= L-6(Z) - p(7) =0
0 (¥ A
= % =L ¢(Z) — p(&¥)  artificial diffusion equations
T
where 7 is an artificial time ( for artificial diffusion equations ). Starting at initial
configuration ¢(Z) relaxes to an equilibrium as 7 — oo by some proper iterations. The
equilibrium means ¢(Z) will not change when time changes ( artificial time ). So that:

06(7)
oy 0

Then the right hand side goes to zero, will satisfy the original equations.

FTCS ( Forward Time Centered Space ) representation and the relaxation procedure.

We have several choices for representing the time derivative term. The obvious way is
to set: "
0s(j) _ &5 — ¢}
= + O(AT
or AT (A7)

That is called Forward Euler Differencing . While forward Euler is only first-order
accurate in A7, it is convenient that one can calculate quantities at timestep n + 1 in
terms of only the quantities known at timestep n.

For space derivative, we can use a second-order representation still using only quantities
known at timestep n:

1
¢; = m.§t+§|;
op(j) i — i 2
ox = wDag +0(Ar)

@w@wmwv _ A w+~|$%v>|&wmgw| %\Hv ITQADR.MJ
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For a 2-D V? operator we have:

@u 1,2 @ 41 + &uvsl - %@N@
Ax?

Vi(z,y) = 2SF

where suppose Az = Ay.

So that to solve a typical Poisson equation could become to solve such a relaxation

equation:
¢
L = V-
e ¢—p
&§+H| 3 _ ,iLN @g 1,8 @ @.IIT@&@I |%&NN — pii
AT Ax? 2

e Using 2-D regular grid and (FTCS) differencing solving 2-D Poisson equation becomes
a iteration procedure:

AT
&N.N_L = i |_|>.&.MA W.THSIT@u 1,2
+ 2.: + %&@I - %%NNV - bu.h.Dq.
Iteration stability analysis allows Ar/Az? = 1/4

n 1
@ o= %A J+1, &u 1,0 &mi#l_l@u@\v

Ax?
-

So the question becomes to write a program which does this iterations until the filed
¢ gets equilibrium.

4.2 Jacobi’s method and loop level parallelization (
openMP )

4.2.1 A Poisson Equation Example:

Let us consider a Poisson equation example such as:
Vi(z,y) = pla,y)

plr,y) = —2n%-sin(nz) - sin(my)
with boundary ¢(xp,y) = 0

This Poisson equation has an analytical solution of
¢(z,y) = sin(rz) - sin(my)

So that we can easyly compare the numerical results and analytical solution to check the
program.
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e To set the data types:

MODULE kind_spec_module

implicit none

INTEGER, PARAMETER :: high = selected_real kind(15,307)
INTEGER, PARAMETER :: low = selected_real kind(6, 37)
INTEGER, PARAMETER :: short= selected_int_kind(4)

n

END MODULE kind_spec_module

e To build a function to get a real maximum values:

MODULE fmax_module

USE kind_spec_module

CONTAINS

I

real(high) function fmax(a,n) result(value)
integer, intent(in) :: n

real(high), dimension(0:n), intent(in) :: a
real(high) :: x

integer :: i

)

x=dabs(a(0))

DO i=1,n-1

if(dabs(a(i).gt.x) x=al(i)

ENDDO

value = x

I

END function fmax

I

END MODULE fmax_module
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e To set necessary arrays and to set the geometry, boundary conditions:

PROGRAM test_f90_loop
I

USE kind_spec_module

USE sor_module, ONLY: sor

n

INTEGER, PARAMETER :: nx=161, ny=161, NCPU=4, ny2=ny/NCPU
real(high), dimension(0:nx, O:ny) = t1

real(high), dimension(1:nx, 1:ny) :: sol, aw, ae, as, an, ap, dd
real(low), dimension(2) :: tarray

real(low) :: utimel,utime2,stimel,stime2,etime

integer, dimension(3) :: iarray

n

integer :: i,j,k, nxi,nyi, iter, nxf nyf

real(high) :: hx hy,pix,y,error

where we set the grid is 160 x 160. Since the Centeral Space technique, the boundary
is at center of (0,1) and (160, 161). So we need to set the grid 0 — 161. The arrays
aw, ae, as, an restore the grid geometry Az (z,y)/dx etc., w,e,s and n mean west, east,
south and north directions. In our simple geometry, all Ax = Ay = hz = ha = 1/160.

Where ap = —(aw + ae + as + an), the 1/ap is the coefficients of the p(z,y) in the
iteration procedure expression. In our simple case 1/ap = 1/4 as we have shown in
the iteration procedure expression. t1 is the main array to store the filed solution of
é(z,y), the array sol is used in the subroutine module sor as a working space.

Where dd is used to store the right hand side of the Poisson equations p(x,y)
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e To initiate the grid and field:

!

! To set the Aw = ha, Ay = hy and 7 = 2 * sin"'(1.0)
!

hx=1.0_high /(dfloat(nx)-1.0_high)

hy=1.0_high /(dfloat(ny)-1.0_high)

pi=dasin(1.0_high) * 2.0_high

!

I To set the geometry amd initiate field values including boundary
!

DO i=1,ny

DO j=1,nx

aw(j,i) = hx/hy

ac(i) = aw(i,i)

as(j,i) = hy/hy

an(iii) = as(i.)

ap = -(aw(i,) + ac(ji) + as(ii) + an(i,i)

t1(j,i) = 0.0_high

ENDDO

ENDDO
!
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! To set the function p(x,y) * Az? on the grid.
!

DO i=1, nx-1

DO j=1, ny-1

x = (i-0.5_high)*hx

y = (j-0.5_high)*hy

dd(i,j) = -2.0_high*pi**2*dsin(pi*x) * dsin(pi*y) *hx*hy
ENDDO

ENDDO

e To set the boundary geometry:

|

! Boundary is located at 0 — 1 and nz — 1 — nxz, ny — 1 — ny.
I West and East

DO j=1,ny

ap(1,j) = ap(1,j) - aw(L)

aw(i,j) = 0.0_high

ap(nx-1,j) = ap(nx-1,j) - ae(nx-1,j)
ae(nx-1,j) = 0.0-high

ENDDO

! South and North

DO i=1,nx

ap(i,1) = ap(i,1) - as(i,1)

as(i,1) = 0.0-high

ap(i,ny-1)=ap(i,ny-1)-an(iny-1)
an(i,ny-1)=0.0_high
ENDDO

! Use lib-U77 routine for timming
!
call itime(iarray)

stimel = etime(tarray)
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utimel = tarray(1)

!

I The physics gridis 1 - nx —1,1 - ny — 1

I nxl=1

nyi=1

nxf=nx-1

nyf=ny-1

error=1.0e-09_high

CALL sor(nx1,nxf nyi,nyf,aw,ae,as,an,ap,dd, &
t1,sol,error,iter)

n

! Finish the lib-U77 timming routines

!

stime2=etime(tarray)

utime2=tarray (1)

print*, ’sor is done with iteration number ’, iter

print*, ’sor is done with CPU time of ’, utime2-utimel, ’ seconds’
print*, ’sor is done with system clock ’, stime2-stimel, ’ seconds’
print*, "The wall clock started : ’, iarray

CALL itime(iarray)

print*, "The wall clock stoped : ’, iarray

!

I Write out the numerical solution comparing with the analytical solution
!

open(8, file="out.dat’,status="unknown’)

DO i=1,nx-1

DO j=1ny-1

x=(j-0.5_high)*hx

y=(i-0.5_high)*hy

write(8,’1x, 215, 2E15.77) j,i,t1(j,i), dsin(pi*x)*dsin(pi*y)
ENDDO

ENDDO

close(8)
!

END program test_f90_loop
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e The iteration procedure — Jacobi’s algorithm:

We need the routine of performing the iteration procedure. The previous iteration
using 7 = n values to get 7 = n + 1 values is called Jacobi’s algorithm.

MODULE sor_module

USE kind_spec_module

USE fmax_module

INTEGER, PARAMETER :: nx=161, NY=161, NCPU=4, ny2=ny/NCPU
CONTAINS

SUBROUTINE sor(nxo,nxf,nyi,nyf,aw,ae,as,an, &

ap,dd,solu,sol,error,iter)

real(high), dimension(1:nx,1:ny),intent(inout)::aw,ae,as,an,ap,dd,sol
real(high), dimension(0:nx,0:ny),intent(inout):: solu
integer,intent(inout)::iter,nxi,nxf,nyi,nyf
real(high),intent(inout)::error
real(high),dimension(0:ny) :: err

real(high) :: errors,erro

integer :: JC, j,i

I

iter=0

erros=error+1.0_high

DO WHILE((erros.GT.error)

err=0.0_high

iter=iter+1

I

ISOMP parallel do default(none), &

I$OMP& shared(nxi,nxf,sol,dd,aw,ae,as,an,ap,dd,err), &
ISOMP& private(j,i,erro)

!

DO J=nyi,nyf

DO i=nxi,nxf

sol(i,j)=(dd(i,j) &

-aw(i,j)*solu(i-1,j) &

-ae(i,j)*solu(i+1,j) &

-as(i,j)*solu(i,j-1) &

-an(i,j)*solu(i,j+1)) &

/ap(i,j)

erro=dabs(sol(i,j)-solu(i,j))
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if(erro.gt.err(j)) err(j)=erro
ENDDO

ENDDO

'$SOMP END parallel DO

n

errors=fmax(err,ny)

n

DO i=1,nyf

DO j=1,nxf
solu(j,i)=sol(j,i)

ENDDO

ENDDO

!

! Endo do while loop

!

ENDDO

n

ENDO SUBROUTINE sor
n

END MODULE sor_module

e Loop Parallelization:

The Jacobi’s algorithm offered that there is not loop carried dependence within a
iteration procedure. So we can easily to use openMP to make the loop within iteration
be parallelized.

Input p(z,y) = —272sin(rz)sin(ry) we have an analytical solution of

o(z,y) = sin(nzx)sin(ry)

which could be used to compare with numerical solution. The comparison is written in the
file names ’out.dat’. Performance analysis with 4 processors as follows ( HP/N_class ):
Parallelization speed up: % =3.8

Schedule speed up: ~ WALLS _ 37

CPU overhead: ~ $EU=L — 7 =3.75%

CPU_S
The 3-D visual reports as:
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Table 4.1: Loop parallelization test ( Jacobi’s)

items serial | parallel code with 4 processors
iteration | 63127 63127
Wall clock | 132.0s 35.9s
CPU Time | 131.9s 136.9s

for Routines

(seconds)

PU
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4.3 Gauss-Seidel method and routine level paralleliza-
tion ( openMP )

4.3.1 Gauss-Seidel Algorithm, Over-Relaxation and Data Decom-
position

e Gauss-Seidel Algorithm:

The Jacobi’s algorithm is not a good algorithm. Since it uses 'previous’ results to
estimate 'current’ results the speed of this algorithm is bad, the accuracy is bad too.

Another classical method is the Gauss-Seidel algorithm. This algorithm uses updated
values of ¢ as input values as soon as they become available.

1
mmI = MA gt %M@Hﬁ + @i+ &NWL
Az?
-

By this way we can get fast converges. However, there is obviously data dependence
within an iteration. So that the parallelization is not as simple as the Jacobi’s algo-
rithm.

e Over-Relaxation:

Since all the algorithm of solving the Partial Differential Equations are based on the
relaxation procedure, we can consider that, when we get the change of the field A¢, it
always go forward to the equilibrium status — so-called relaxing. Could we make the
relaxing a little bit faster? Such as after each Gauss-Seidel iteration, make the new
configuration as:

mel +1
o = O tw- {8 — o7}

1.0< w <20

The experiments show that this Over-Relaxation gives us fastest converges adds
more data dependence. The optimal choice of w is

2
w =
1+ \V 1 - EWQQQE

where pr.cop; 1S the spectral radius of Jacobi’s iteration. The detail please check any
numerical algorithm text book. However, the experiments show that user can simplely
choose w = 1.5 or 1.6 to get good enough speed.
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e Natural Parallelism and SIMD model:

Most of the physics systems are nearest neighbor interacting systems which give us
some natural parallelism. We can use regional data decomposition method to manage
our data streams within physics space. That gives us a SIMD parallelism model.

\vm regional decomposition] M

¥ ¥ ¥
1 2 M
SORISOR -+ POR
Y 1 1
m boundary mxowmbmm:mv
no ¥ yes

. A criterion checking vHv

The regional data decomposition is simple to separate the 2-D space into several pieces
including the additional boundaries such as:
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e The main Gauss-Seidel Routin with Over-Relaxation:

At this time we first set the number of processors we want to use in the kind_spec_module.
We first do the data decomposition for y-direction only and leave the z-direction de-
composition as a exercise for the readers.

T T T T T

MODULE kind_spec_module

!

implicit none

INTEGER, PARAMETER :: high = selected_real kind(15, 307)
INTEGER, PARAMETER :: low = selected_real kind(6, 37)

INTEGER, PARAMETER :: short= selected_int_kind(4)

INTEGER, PARAMETER :: nx=161, ny=161, NCPU=4, ny2=ny/NCPU
!

END MODULE kind_spec_module

The Gauss-Seidel routine works only on a sub-space such as:
T L L L T

MODULE sor_module

!

CONTAINS

!

SUBROUTINE sor_task(nx,ny2,aw,ae,as,an,ap,dd,solu,err,w)
!

USE kind_spec_module, ONLY : high

integer, intent(in) :: nx, ny2

real(high), dimension(1:nx,1:ny241), intent(inout) :: aw, ae, as, an, ap, dd
real(high), dimension(0:nx,0:ny2+1), intent(inout) :: solu

!

real(high), intent(inout) :: err

real(high), intent(in) :: w

real(high) :: snew

integer :: j, i

!

do j=1,ny2

do i=1,nx

snew = (dd(i,j) &
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-aw(i,j)*solu(i-1,j) &
-ae(i,j)*solu(i+1,j) &

-as(i,j)*solu(i,j-1) &
-an(i,j)*solu(i,j+1)) &

/ap(i,j)

err = dabs(snew-solu(i,j))

solu(i,j) = solu(i,j) + w*(snew-solu(i,j))
enddo

enddo
!

end subroutine sor_task
END MODULE sor_module

Then we build a TASKING _module to use the sor_task routine on a shared memory
machine.

m
MODULE TASKING_module

USE kind_spec_module
!

real(high), dimension(0:nx, 0:ny2+1) :: t1, t2, t3, t4

real(high), dimension(1:nx, 1:ny2) :: awl, ael, asl, anl, &

apl, dd1, aw2, ae2, as2, an2,ap2,dd2, aw3,ae3,as3,an3,ap3,dd3,awd,aed,asd, &
an4,ap4,dd4

!

CONTAINS

SUBROUTINE TASKING (iter,crite,w)

!

I To separate the field data array into NCPU .

I To initialize the boundary condition, source input, and regional
I initialization.

USE sor_module, ONLY : sor_task

!

real(high) :: error,errl,err2,err3,errd

real(high), intent(in) :: crite,w

integer, intent(inout) :: iter

integer :: i, j

|
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I Start iteration

!

iter=0

error = 1.0_high

!

do WHILE((error .GT. crite)
I'iter=iter+1 !

! Start the openMP parallel section parallelization
!

'$OMP parallel shared(w, nx, ny2)
I$SOMP SECTIONS

'$SOMP SECTION

call sor_task(nx,ny2,awl,ael,asl, &
anl,apl,dd1,t1,errl,w)

'$SOMP SECTION

call sor_task(nx,ny2,aw2,ae2,as2, &
an2,ap2,dd2,t2 err2,w)

'$SOMP SECTION

call sor_task(nx,ny2,aw3,ae3,as3, &
an3,ap3,dd3,t3,err3,w)

'$SOMP SECTION

call sor_task(nx,ny2,aw4,ae4,as4, &
and,ap4,dd4,t4 errd,w)

'$SOMP END SECTIONS

!

I Start communication to exchange the inner boundary values
!

ISOMP DO private(j)

DO j=0,nx
t1(j,ny2+1)=t2(j,1)
t2(j,ny2+1)=t3(j,1)
t3(j,ny2+1)=t4(j,1)
£2(j,0) = t1(j,ny2)
£3(j,0) = t2(j,ny2)
t4(j,0) = t3(j,ny2)
ENDDO

'$SOMP END DO

ISOMP END PARALLEL
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!

! Check the criterion condition

!

error=errl

if(err2.gt.error) error=err2
if(err3.gt.error) error=err3
if(errd.gt.error) error=err4

!

if(mod(iter,1000).EQ.0) write(6,*) ’iteration error and criterion ’,&
iter,error,crite

end do

!

END SUBROUTINE TASKING
!

END MODULE TASKING_module

Performance analysis on HP/N_class shows ( err = 10710 ):

Table 4.2: Multiple section parallelization test (SOR_-TASK)

items serial code | parallel code with 4 processors
iteration 9383 9383
Wall clock 32.1s 8.6 s
CPU Time 32.0s 33.17s
Parallelization speed up: % = 3.86

Schedule speed up: ¥ =3.7

. CPU.P .
CPU overhead:  gpys — 1 = 3.8%

The 3-D visual reports as:
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for Routines

CPU (seconds)
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4.4 Gauss-Seidel method and message passing — dis-
tributed programming ( MPI )

Since Gauss-Seidel algorithm needs to use the natural regional parallelism, and needs the
communication among all the threads. All the data regions with corresponding boundary are
independent of each other within an iteration. So we can send the communication work to
the message passing interface and write the distributed memory program. At this case, the
program will be a SPMD model. Each processor works with the same program and passes
message to each other. That kind program can be run on even very simple PC cluster,
without very expensive processors and softwares. The program will has not any directives,
neither openMP, nor APO.

e Set simple data for one processor:

I File kind_module

MODULE kind_spec_module

!

implicit none

!

INTEGER, PARAMETER :: high = selected_real kind(15, 307)
INTEGER, PARAMETER :: low = selected_real kind(6, 37)
INTEGER, PARAMETER :: short= selected_int_kind(4)
INTEGER, PARAMETER :: nx=161, ny=161, NCPU=4, ny2=ny/NCPU
!

END MODULE kind_spec_module

!

e The Gauss-Seidel Iteration Routine for one processor:

MODULE sor_module

!

CONTAINS

subroutine sor(nx,ny2,aw,ae,as,an,ap,dd,solu,err,w)
I Use high only, do not use the nx,ny,ny2, NCPU

USE kind_spec_module, ONLY : high
!
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real(high), dimension(1:nx, 1:ny2), intent(inout) :: aw,ae,as,an,ap,dd
real(high), dimension(0:nx, 0:ny2+1), intent(inout) :: solu
real(high), intent(in) :: w

real(high), intent(inout) :: err

real(high) :: snew

integer, intent(in) :: nx, ny2
integer :: 1i,j

!

do j=1,ny2

do i=1,nx-1

snew = (dd(i,j) &
-aw(i,j)*solu(i-1,j) &
-ae(i,j)*solu(i+1,j) &
-as(i,j)*solu(i,j-1) &
-an(i,j)*solu(i,j+1)) &
/ap(i,j)

err =dabs(snew-solu(i,j))
solu(i,j) = solu(i,j) + w*(snew-solu(i,j))
enddo

enddo

!

end subroutine sor

END MODULE sor_module

e Specail Initiation considering the whole large grid:

We must initiate a physics state on the grid, and prepare to use the message passing
interface. So the initiation are little bit different from the original simple one ( in
section 2 ).

MODULE initial_module

!

CONTAINS

!

SUBROUTINE INITTAL(t,aw,ae,as,an,ap,dd,hx hy,myid,idu,idd)
USE kind_spec_module

real(high), dimension(1:nx,1:ny2), intent(inout) :: aw,ae,as, an, ap, dd
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real(high), dimension(0:nx, 0:ny2+1), intent(inout) :: t

real(high), intent(in) :: hx,hy

real(high) :: pi, y2hy, x, y

integer, intent(in) :: myid

integer, dimension(1:NCPU), intent(inout) :: idu, idd

integer :: npiece, i, j

!

I Input source function

!

npiece = myid + 1

pi=datan(1.0_high)*4.0_high

y2hy=hy*dfloat(ny2)*dfloat(npiece-1)

!

! The neighbors id

!

DO i=1,NCPU

idu(i) =1

idd(i) =i- 2

ENDDO

idd(1) = NCPU-1

idu(NCPU) =0

!

DO j=1ny2

DO i=1,nx-1

x=hx*(dfloat(i)-0.5_high)

y=hy*(dfloat(j)-0.5_high)+y2hy

dd(i,j)=-2.0_high*(pi**2)*dsin(pi*x)*dsin(pi*y)*hx*hy

ENDDO

ENDDO

!

! Input boundary and mesh information

!

DO i=1,ny2

DO j=1,nx

aw(j,i)=hy/hy

ae(iyf) =aw (j,)
)=hx/hy

an(j,i)=as(})

as (i
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ap(j,i)=-aw(j,i)-ae(j,i)-as(j,i)-an(j,i)
ENDDO

ENDDO

!

I Fix the physics boundary and multi-region boundary condition
!

I' X-direction all regions have X-direction physics boundary.
!

DO j=1ny2
ap(1.)=ap(1,j)-aw(1)
ap(nx-1,j)=ap(nx-1,j)-ae(nx-1,j)
aw(1,j)=0.0_high
ae(nx-1,j)=0.0_high

ENDDO

!

! Y-direction only 1 and 4 have Y-direction physics boundary.
!

IF (npiece.eq.1) THEN

DO i=1,nx

ap(i,1)=ap(i,1)-as(i,1)
as(i,1)=0.0_high

ENDDO

ENDIF

!

IF (npiece.eq. NCPU) THEN

DO i=1,nx
ap(i,ny2)=ap(i,ny2)-an(iny2)
an(i,ny2)=0.0_high

ENDDO

ENDIF

!

I Initialize the solution to be zero

!

DO i=0,ny2+1

DO j=0,nx

t(j,1)=0.0_high

ENDDO

ENDDO
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end SUBROUTINE INITIAL
SRR n NN

SUBROUTINE btoex

USE kind_spec_module

!

real(high), dimension(0:nx, O:my2+1) :: ¢
real(high), dimension(1:nx, 1:ny2) :: aw,ae,as,an,ap,dd
integer :: myid, idummy

real(high) :: xerr, err

integer, dimension(1:NCPU) :: idu, idd

!

COMMON / FIELD / t,aw,ae,as,an,ap,dd
!

COMMON / mpidata / myid,idummy, xerr, err,idu,idd
!

IF (myid. NE.(NCPU-1)) THEN

DO j=0,nx

(3, 0) = t(j, ny2)

ENDDO

ENDIF

!

IF(myid.NE.0) THEN

DO j=0,nx

G, ny2+1) = t(j, 1)

ENDDO

ENDIF

!

END SUBROUTINE btoex

!

END MODULE initial_module

e For using the message passing interface we build a module to include most
of the communication procedures:

MODULE COMMU _module
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!

CONTAINS !

SUBROUTINE COMMU _replace

!

USE kind_spec_module

include 'mpif.h’

INTEGER ISTATUS(MPI_STATUS_SIZE)

!

real(high), dimension(0:nx, O:ny2+1) :: t

real(high), dimension(1:nx, 1:ny2) :: aw,ae,as,an,ap,dd
real(high) :: xerr, err

integer :: myid, idummy

integer, dimension(1:NCPU) :: idu, idd

integer :: iid, irr

!

COMMON / FIELD / t,aw,ae,as,an,ap,dd

!

COMMON / mpidata / myid,idummy, xerr, err,idu,idd

!

iild = myid + 1

CALL MPI_Sendrecv_replace(t(1, 0), nx+1, MPI.REALS, idu(iid), &
myid, idd(iid), idd(iid), MPL.COMM_WORLD, ISTATUS, irr)
!

CALL MPI.BARRIER(MPI_COMM_WORLD, irr)

!

CALL MPI Sendrecv_replace(t(1, ny2+1), nx+1, MPI_REALS, idd(iid), &
myid, idu(iid), idu(iid), MPI.COMM_WORLD, ISTATUS, irr)
!

CALL MPI.BARRIER(MPI_.COMM_WORLD, irr)

!

CALL MPI_Allreduce(err, xerr, 1, MPI. REALS, MPI.SUM, &
MPI.COMM_WORLD, irr)

!

END SUBROUTINE COMMU _replace
LT T T T T T T

SUBROUTINE OUTPUT (myid, t, hx, hy)
USE kind_spec_module

include 'mpif.h’
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real(high), dimension(0:nx, 0:ny2+1), intent(inout) :: t
real(high), dimension(0:nx, 0:ny2, 1:NCPU) :: tc
real(high), intent(in) :: hx,hy

real(high) :: pi, y2hy, x, y

integer , intent(in) :: myid

integer :: ncount, jm, jid, i, j

!

pi=4.0_high*datan(1.0_high)
y2hy=dfloat(ny2)*hy

ncount = (nx+1)*(ny2+1)

!

I Gether all solution to root processor in the array tc
!

IF(myid .EQ. 0 ) OPEN(unit=8, file="out.d’)
CALL MPI_Gather(t,ncount, MPI_REALS, tc,ncount, MPI. REALS,0, &
MPI.COMM_WORLD, ir)

!

IF(myid.eq.0) THEN

DO jm=1,NCPU

jid = jm - 1

DO j=1ny2

DO i=1,nx-1

x = (dfloat(i)-0.5-high)*hx

y = (dfloat(j)-0.5_high)*hy

!

write(8,’(1x, 2i5, 2E18.10)") i,j+jid*ny2,tc(i,j,jm),dsin(pi*x) &
*dsin(pi*(y+dfloat(jid)*y2hy))

ENDDO

ENDDO

ENDDO

ENDIF

!

END SUBROUTINE OUTPUT

!

END MODULE COMMU _module
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e Main program used to call different routines and output the results:

program test_MPI

!

USE kind_spec_module
USE initial_module
USE COMMU _module
USE sor_module

!

include 'mpif.h’

!

real(high), PARAMETER :: crite=1.0d-10, w=1.5_high
real(high), dimension(0:nx, O:my2+1) :: ¢

real(high), dimension(1:nx, 1:ny2) :: aw,ae,as,an,ap,dd
real(high) :: xerr, err, hx hy

real(lo

w), dimension(1:2) :: tarray

real(low) :: utimel,utime2,stimel,stime2

integer :: myid, idummy,numprocs,ierr

integer, dimension(1:NCPU) :: idu, idd

integer, dimension(1:3) :: iarray

COMMON / FIELD / t,aw,ae,as,an,ap,dd

!

COMMON / mpidata / myid,idummy, xerr, err,idu,idd
!

! To initiate the MPI

!

CALL MPIINIT (ierr)

CALL MPI.COMM_RANK(MPI_.COMM_WORLD, myid, ierr)
CALL MPI.COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
hx=1.0_high/(dfloat(nx)-1.0_high)
hy=1.0_high/(dfloat(ny)-1.0_high)

!

I To initiate the physics state

!

CALL INITIAL(t,aw,ae,as,an,ap,dd,hx hy,myid,idu,idd)
!

I' To initiate U77 Library
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!

print *, ’ok Ax=B is ready’, myid

call itime(iarray)

stimel=etime(tarray)

utimel=tarray(1)

stimel=tarray(2)

!

I To solve the PDE by Gauss-Seidel iteration algorithm.
I Start iteration

!

iter =0

xerr = 1.0 high

!

DO while ( xerr .gt. crite )

!

iter = iter + 1

!

CALL SOR(nx,ny2,aw,ae,as,an,ap,dd,t,err,w)
!

I Start communication to exchange the inner boundary values
!

CALL btoex

CALL COMMU _replace

!

! To check the criterion condition

!

IF( myid.eq.0.and.mod(iter, 1000).EQ.0 ) &
print *, ’iteration and error’, iter, xerr

!

ENDDO ! end the do while loop

!

I To output the numerical results into a disk file
!

CALL OUTPUT (myid, t, hx, hy)

!

I' To finish the MPI

!

CALL MPLFINALIZE(ir)
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end program test_MPI

e The program looks longer, but it is not true for the machine performance.

Table 4.3: MPI parallelization test (SOR)

items serial code | parallel code with 4 processors
iteration 9558 9558
Wall clock 34.8 8.9 sec
CPU Time 34.4 34.8s

4.5 Laboratory exercises

1. Please write yourself the whole program of Jacobi’s loop parallel solver to the Poisson
equations name it Poisson_omp.f90.
You can use following shell commands to compile it and run it.
f90 -mp -O2 Poisson_omp.f90
setenv OMP_NUM_THREADS 4

a.out

If you meet any troubles, you can use f90 -mp -g -O2 Poisson_omp.f90 to compile it
and use gb a.out to debug the executable. Please follow the document of the gb. You
can do it anymore.

2. Please read the program Poisson_MPI.f90, which is the MPI message passing program.
I added some c-preprocessing directives in there. If you understood the program you
can try to compile and run it by following shell commands:

f90 -O2 -DMPI Poisson MPI.f90 -lmpi
mpirun -np 4 a.out

Then using vi to change the NCPU=1, using following commands to run the job serially.
Change the crite to make the iteration number very close to the parallel run. You can
check the parallel speed-up.

90 -O2 -DSingle Poisson MPI.f90 -lmpi

a.out
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Chapter 5

How to Write a Fast and Portable
Parallel Program

1. Spawn and Join Overhead — Size Problem

2. Memory Hierarchy, Cache Missing Latency — Locality

3. Message Passing Latency — Limit Message Passing

4. Synchronization Waiting — Coarse Parallelism and Fine Parallelism
5. RISC Processor Pipe Line — Instruction level parallelism

6. Portability

A fast and portable program is a dream of most of the high performance parallel comput-
ing programmers. There is a lot of the factors which affect the speed and portability. Most
of them are related to the architecture of the exact machines. Some also related the exact
scientific problems which you want to solve. We just discuss some major projects here.

5.1 Spawn and Join Overhead — Size Problem

We have see in the chapter2 that in the loop level parallelization the program goes to ” spawn”
multiple threads, send all ”private” variables to each ”child” threads as well as send the
"code” which going to be executed to the "child” threads, then starts to execute all the
block of the code. When any thread finished the executing, it MUST wait at the "end do”,
until all the threads finished their work. Then the master thread collects all the necessary (
like LASTPRIVATE etc. ) data back to main stream, and asks system to close the additional
threads ( joining ).

95
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|

m Spawn M Threads u
1 1 1

0 1 M-1

¥ ¥ ¥
m z?é%?a u

|

You can get benefits from multiple thread performance, but you also HAVE TO expense
the overhead. For example, the matrix-matrix multiplication program mm_omp.f90 which
we shown in chapter2:

Table 5.1: Matrix-Matrix Multiplication Test ( HP/N_class )
NxN 1 Processor 2 Processor 4 Processor
CPU Wall CPU Wall CPU Wall
100x100 .00072 | .00072 || .0022 | .0016 .0087 .0038
200x200 0.025 | 0.025 0.042 | 0.028 0.114 0.047
500x500 0.912 | 0.914 1.075 | 0.553 1.550 0.420
1000x1000 || 8.740 | 8.743 | 10.091 | 5.093 14.240 | 3.647
2000x2000 || 70.259 | 70.267 || 85.981 | 43.159 || 114.211 | 28.909

The experiment shows that when the matrix size less than 200x200, the parallelization
only gets no speed up but slow down. Only the matrix size is larger than 500x500, the
parallelization gets speed up. As well, we can see that, more processors do not means higher
speed. In the 2000x2000 case, 2 processors make a factor 1.6 speed up, but 4 processors
make only a factor 2.4 speed up. We paied twice computer resources, get only 80% to 60%
is useful.

So that the loop size is a very important factor to determine whether we parallelize it
or not. For small loop the parallelization will only wast the computer resource. As well as,
only for large enough loop we can use more processors.

Almost all the supercomputers have the compiler with Automatic Parallelizing Option (
APO ). On the Origin 2000, it is -O3 option. In the last 10 years, not even one vendor can
make the APO success. Since APO check all the loops in your program and parallelize them
all. In most of the case you can not guarantee speed up, in some of the complicated case,
even you can not guarantee the numerical results are correct. So that DO NOT DEPEND
ON APO, depend on yourself!!
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5.2 Memory Hierarchy, Cache Missing Latency — Hi-
erarchical Algorithm and Locality

Memory hierarchy is an important technique used on all supercomputers to increase the
capacity of the memory and decrease the cost. However, it will also decrease the data
fetching speed. A typical 5 level memory hierarchy for a shared-distributed machine, such
as Origin 2000, is shown that:

m Register in CPU u

m On chip cache U

m Off chip cache u

%

m Local private EmEoG\u

R

m Global shared BmBOa@

5.2.1 Cache Missing Latency and Hierarchical Algorithm

The designed processor speed ( peak speed ) is very high, for example, the 200MHz Origin
2000, the peak speed is 400Mflops/sec/processor.
Let us consider s very simple operation such as

DO j=1,1000000

a(j) = b(j) + c(j)
ENDDO

for 400Mflops/sec/processor speed, each processor wants 2*8*400=12800MBytes data
fetched from memory. From the SGIl.com web we get the information of the bandwidth is
only 780MBytes/sec/processor peak which is less than 10% of the data wanted.

This conflict strongly shows that the processor uses more than 90% time for waiting the
data and does nothing in this case. We call the wasted time when the processor is waiting
for data as the cache missing latency.

Cache coherence is used to reduce this conflict. The processor also designed to have more
INTEGER UNITS to interpret code and make the data being fetched before it is wanted.
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However, it does not solve it at all.

The programmer MUST consider how to use the fast cache to speed up his program.
Since cache is a very high speed memory, if we can let the data fetched from memory stay in
cache and do more performances, them we can dramatically increase the speed. Logically,
let us consider a Cache Use Ratio ( CUR ) such that

number of performance

CUR = number of data reference

For most of linear algebra computing we have:

Table 5.2: BLAS Class and Cache Use Ratio

Class computing CUR = Ziihersr dors efecence

0 vector ( or matrix ) assignment, ~1/2

1 vector-vector V.= B + aV ~ 3/3

2 V-Matrix multiplication V=MV ~ 2

3 M-M multiplication M = LR ~n

Table 5.3: BLAS level and cache miss latency on HP/SPP2200

routine Function class | Latency/CPU
DGEMM | M1 =M2*M3 | 3 21.8%
DGEMV | V=M *V1 2 44.8%
DAXPY | V=a*V1 +V 1 72.1%
DGTHR | V(i)=V1(ind(i)) | 0 79.9%
SGEMM | M1 =M2 *M3 | 3 16.7%
SGEMV V=M*V1 2 43.2%
SAXPY | V=2a*V1 +V 1 74.5%

Recently, the numerical algorithm community developed a lot of so-called ’hierarchical
algorithms’. The basic idea is using less data to do more computing. In the linear area it
is to use more matrix matrix multiplication less lower class computing — that is the Block
Algorithms. The LAPACK library is a good example.

However, the cache length depends on the exact machine, and L2 cache ( off chip ) is
slower than the L1 cache ( on chip ). The fatest cache is LO cache ( CPU register ). Only
very good programmer can consider all such factors to design his program and get very nice
speed. However, such a program also will lose the portability too. So we suggest here that:

e If it is possible use the vendor offered library ( the same vendor offered machine ),
which is optimized on the same machine. You will get the best cache use ratio as well
as the best performance speed.

e Re-check your programming idea, to see if it does satisfy the Hierarchical Algorithm
idea or Block Algorithm idea.
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5.2.2 Private Memory and Global Memory — Locality

The main memory also has 2-level hierarchy — private memory and global memory. For
example, SGI Origin 2000 architecture offers 2 processors join one private memory as one
board each processor has his own private memory 258MB to 1GB. Two processors on one
board connected with multiple cross-bar ( CRAY Connection Technique ) build one physical
address space. The vendor used to call this physical space as the local memory. The data
fetching speed within the local memory could reach the peak ( about 780MB/sec/processor

).
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Different processor boards connected by optical fibers. The bandwidth of the connection is
about 100MB/sec. When one processor wants data which located on the other processor
board, the data MUST fetched through the optical fibers. The cache missing latency will
getting much worse.

When the vendor develop the compiler which works on the exact machine they have
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considered this problem. So the compiler will distribute the data variables as wide as possible
and make them to meet the best fetching status. However, the high level programming
language define the data array as that the fortran define array name is an address, C or
C++ used to use pointer to the address too. All the array are managed as one by one series
( one dimension line in the memory ). If your program has some large array, it always located
on one processor or one physical address space. That will make the data fetching from the
other processor board very slow and the compiler can not help you. So we suggest that:

e To define more relatively small arrays instead of one big array and put them in multiple
data blocks ( like common block ). So that the intelligent compiler can help you to
distribute the array location.

e [f it is possible, decompose your data design a SPMD mode program. So that the
working data arrays always located on one exact processor’s main memory.

e To avoid to use single processor with vary large memory, for example > 2GB. It can
work but very slow.

5.3 Message Passing Latency — Limit Message Pass-
ing

Another important speed delay is the Message Passing Latency. For distributed memory
machine programming we always need the message passing. For synchronization reason,
the bandwidth of message passing is similar with the global memory data fetching. So
we always say that message passing is very expensive. Any message passing slow down
your performance. You must design to use the message passing as little as possible. For
example, the 7 calculate is a perfect distributed memory program. It even was used as
an advertisement of "networked supercomputer” — thousands workstations connected by
internet and got almost linear speed up. Since there is only few data need to be passed.
Other example — the matrix to matrix multiplication:

DOj=1,N
DOi=1,N

DOk =1,N

c(i, j) = c(i, j) +a(i, k) * b(k, j)
ENDDO

ENDDO

ENDDO

You can just parallelize the most outside loop DO j. So you can send piece of b to
different processors, however, you MUST send whole matrix a to each processor too.

A -«-| By | By | B3 |
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The message passing latency will be reduced the performance speed will be getting better.

5.4 Synchronization Waiting — Coarse Parallelism and
Fine Parallelism

Most of the program is designed as almost the same number of the performance for each
processors. So it can get completed simultaneously before the next serial test or parallel step
starts. However, the UNIX system is a multiple task multiple user system. Machine works
not for one user. There are always multiple jobs run on it. So you can not guarantee each
thread you opened could work with the same speed. But the physics parallelism is limited,
out this real limit, you have data dependence. For example, to solve a Partial Differential
Equation, before one iteration totally completed, you can not start the second iteration,
since the second iteration uses the data from the first iteration.

In a exact program, you must put a synchronization point there. If any processor finished
his job, MUST wait at the synchronization point until all the processors finished their jobs.

This is an additional overhead to the parallelization, we call it synchronization latency.
Logically it is easy to understand that, there are more users on the machine, there is higher
probability for waiting. As well as, you user more processors, there is higher probability for
waiting too.
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Fine-grain parallelism

Coarse-grain parallelism

So that we sugget that:

e When you plan to use Massive Multiple Processors, ( used to mean more than 32
processors ), you'd better choose coarse parallelism.

e When you plan to use not too many processors and want to simply use shared memory
model, you’d can use fine parallelism.

e The mixed coarse-fine parallelism.

Since the parallel speed up used to get down when user try to use more than 1024
processors, so that if the programmer can parallelize the fine parallelism within the program,
to make the fine parallelism works as shared memory few processor parallelized, then the
number of processors he can use will be a factor increased.

ZNVSS@ - 2%892@ * Zw\&:m

That makes user to get more parallel benefits.

5.5 RISC Processor Pipe Line — Instruction level par-
allelism

All the current supercomputers are based on the RISC processor ( Reduced Instruction
Set Computing ). The RISC processor is a superscalar processor which allow multiple in-
structions to be issued simultaneously during each clock cycle. RISC processor has pipeline
architecture such that:
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The RISC processor peak speed is:

Time Cycles

(Peak Speed) = (Frequency) x (Number of Floating Units)

103

Multiple floating units and the additional integer units make the RISC processor very fast.
For example, Origin 2000 uses RX1000 processor which has 2 functional units within the
processor. So the peak speed is 200x2=400Mflops. The HP /PA8600 processor has 4 floating

units within the processor, So the peak speed for 200MHz is 200x4=800Mflops.

However, it is almost impossible to reach the peak speed, since mostly of the cache
missing latency. As well as, if your program has not the very fine parallelism which can fill
all the floating units full, you can not get high speed too.

e Loop unrolling:

For a simple loop such as:

DO I=1,N

A(D)=A(D)+B(1)*C

ENDDO
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We can make it as:

DO I=1,N,4

)
A(T+1)=A(I+1)+B
A(I+2)=A(I+2)+B(I42)*C
A(1+3)=A(1+3)+B

Since there is not data dependence, the compiler will send each line to each floating
unit to run. So the second program can fill all the 2 or 4 floating units fully work.
Since this parallelism used to run within a processor, that means all the code and data
MUST can stay within L1, even L0 cache. So it is a VERY FINE parallelism ( it is
used to less than 50 instructions ) called instruction level parallelism. This loop change
procedure used to be called as loop unrolling. A example of the loop unrolling effect
can be shown as:

Table 5.4: 100 x 100 matrix to matrix multiplication on HP /SPP2200

Unroll factor | performance(Mflops) | percentage of peak
1 209 26.1%
2 361 45.1%
3 424 53.0%
4 515 64.4%
Veclib 773 96.6%

e Some machine has compiler directives to claim loop unrolling. Some machine has
auto-unrolling. However, all of them are not portable. So a good parallel program
must include instruction level parallelization. That is called instruction level parallel
programming: to unroll the most important loop as fine as possible by programmer’s
hand.

For example, in Lattice QCD program there is a : SU(3)xSU(3) routine
INTEGER, PARAMETER. :: N=1000000

COMPLEX(16), dimension(3,3,N):: w, u, v

w=0.0_high

DO I=1,N

K=J(I)

DO J1=1,3

DO J2=1,3
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DO J3=1,3
w(J2,J1,1)=w(J2,J1,1)+u(J2,J3,1)*v(J3,J1,K)
ENDDO

ENDDO

ENDDO

ENDDO

We change this program into a very ugly program such as:

INTEGER, PARAMETER :: n=1000000
real(8),dimension(18,m) :: u, v, w

w = 0.0_high

DOi=1,n

k=j(i)

w(l i) =u(l.,i) *v(l k) -u2,i) *v(2.,k) &
+ u(3,i) * v(7 k) - u(4,i) *v(8 k) &
*v(13,k) - u(6 ,i) * v(14,k)

—

w(2 ) = u(l i) *v(2 k) + u@ ) *v(l k) &
*v(8 k) + u(d i) *v(7 k) &
* v(14,k) + u(6 i) * v(13,k)

w(3 1) =u(l.,i) *v(3 k) -u2,)*v(d .k &
*v(9 k) -u(4,i) *v(10,k) &
* v(15.k) - u(6 ,i) * v(16,k)



106CHAPTER 5. HOW TO WRITE A FAST AND PORTABLE PARALLEL PROGRAM

ENDDO

In this new program, each line is independent of the others. Each line can be per-
formed by each floating unit within one processor. So it included the instruction level
parallelization.

5.6 Portability

Portability is a dream of numerical programmers. It used to happen to the programmer
that, when you finished a program with very hard tunning and make it run well on one
supercomputer, then you find that it works bad even does not want to work on the other
supercomputers. The reason is obvious. The program is not Portable.

It often happened that even one did invest long time to write a parallel program for some
supercomputer, before one get much use to get his job done, either the environment changed
or the computer company goes out. Then the program becomes useless.

There are many different architectures of the supercomputers. Some supercomputers used
a shared-memory model, others used a distributed-memory, or shared-distributed model.
Some used a special parallel languages or special language extensions ( directives ), while
others used standard Fortran or ¢ with special message passing package. Some computers
used large cache with high bandwidth, the others used small. ------ . How we can make the
program running on different architectures with very high user’s effective speed?

Portability has not a detail definition yet. However, it means some machine independent
properties.

Portablility
e Machine independence:

— without special language or directives dependence;

— without special library dependence
e less dependence on the special architecture

— cache lenth,
— number of the processors,

— number of the functional units within processor.
e works on both shared memory machines and distributed memory machines.
e reasonable efficiency.

It needs experiments to get better portability. We only can give some suggestions here:

1. Using standard Fortran, C or C++ language with no special functions.
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2. Using MPI ( has been accepted by all major supercomputer vendors as a standard )

message passing interface with data decomposition for the coarse parallelism.

3. Using openMP ( almost being accepted by major supercomputer vendors ) for the fine

parallelism.

4. Do not use APO; Do not use special directives; Do not use special library.

5. Use high BLAS algorithms and take care of locality.

6. Take care of instruction level parallelism by hand.

After you took care all of the factors, the program could be very portable. For example,
a portable QCD Monte-Carlo program test shown:

I
o
25000 I~ ¢ gP /SPP2200 7
20000 - o T3E-900 i
15000 - o -
[ )
10000 - -
®
5000 -
o
]
0 o _ _ _ _ _

0 10 20 30

40 50

60

Table 5.5: Monte Carlo code performance efficiency with 8 processors

T3E900 | Or. 2000 | Exe. 1200 | Exe. 2000 | SPP2200
Peak (Mflops) 900 390 120 400 800
Dimension m 2 2 2 4 4
Effective (Mflops) 439.1 170.9 52.1 172.8 363.2
Bandwidth (Mb/sec) | 97.2 9.4 14.5 33.0 54.5
Efficiency 48.8% 43.8% 43.4% 43.5% 45.3%
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Chapter 6

About LINUX PC Cluster

e The PC Clusters become a very important type in the high performance parallel su-
percomputing.

e In June 2003, the Top500 list includes 29.70f the clusters are academic/research made,
only 8.9

o After the CPU frequency gets more than 1GHz, the Beowulf ethernet communica-
tion makes parallel supercomputing being nonsense. General rule of thumb is 1GHz
requires, at least, 1Gbit/s communication network.

e P4 processors with SSE technique addes cheap gigbit network goes to PMS ( Poor
Men’s Supercomputer ).

1. Mother Board: P4SAA-E7205, 533FSB,DDR-266,6PCI ~ $196

2. 2 CPU: XEON 2.0GHz, 400FSB, 512K Cache  2x$134

3. Memory: 1GB DDR 3200, 400MHz  $134

4. Case: incl. Power 500W  $55

5. Disk: EIDE 80GB  $66

6. GigE: 4xPCI cards 4x$29  $126

7. Summation: Cost per dual node ( 16Gflops peak with SSE )  $845

8. < $1.0/Mflops measured, < $0.5/Mflops sustained, < $0.1/Mflops peak.

9. Waste heat: about 110W per node.
110KW /sustain Tflops

e The best running time measured performance on the P4 cluster in 2002 is 500Mflops/second /processo
It is not too bad! ( The peack of the P4 2GHz processor with SSE technique is
8GFlops/second/processor )

109
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e The frequency of the FSB ( Front Side Bus ) together with the memory type and
frequency ( RAMBUS - DDR ) determines the memory to cache data rate. So far,
ADM, Q2/2003 Athlon is 400MHz; Intel, Q2/2003 XEON 533MHz; P4 800MHz.

e Memory speed: DDR-SDRAM: 16bytes x clock ( x channels ) RAMBUS: 16bits x clock
( x channels )

e After PCI bus bottlenek PMS will be a very good choise.



